Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast inflammation is key to cancer growth, Kimmel Cancer Center researchers say

15.12.2010
Their animal study is the first to show that shutting down breast inflammation stops cancer onset and progression

It took 12 years and a creation of a highly sophisticated transgenic mouse, but researchers at Kimmel Cancer Center at Jefferson have finally proven a long suspected theory: Inflammation in the breast is key to the development and progression of breast cancer.

In the December 15 issue of Cancer Research, the scientists say they can now definitively show that an inflammatory process within the breast itself promotes growth of breast cancer stem cells responsible for tumor development.

They also demonstrate that inactivating this inflammation selectively within the breast reduced activity of these stem cells, and stopped breast cancer from forming.

"These studies show for the first time that inactivating the NFKB inflammatory pathway in the breast epithelium blocks the onset and progression of breast cancer in living animals," says Richard G. Pestell, M.D., Ph.D., Director, Kimmel Cancer Center and Chairman of Cancer Biology.

"This finding has clinical implications," says co-author Michael Lisanti, Leader of the Program in Molecular Biology and Genetics of Cancer at Jefferson. "Suppressing the whole body's inflammatory process has side effects. These studies provide the rationale for more selective anti-inflammatory therapy directed just to the breast."

Dr. Pestell and his colleagues show the "canonical" NFKB pathway promotes breast cancer development: the first "insult" is provided by the HER2 oncogene, which then activates NFKB (nuclear factor kappa-light-chain-enhancer of activated B cells). NFKB turns on inflammation via tumor-associated macrophages (TAM), which produce tumor growth promoting factors.

Although inflammation, mediated by NFKB, has long been thought to be important in breast cancer development, the theory had been untestable because NF-êB is essential to embryonic development, Dr. Pestell says. "When you try to knock out NFKB genes in mice, they die."

He addressed this problem by creating a mouse in which the inflammatory system within the adult animal's normal breast could be regulated. This allows selective inactivation of NFKB in different cell types and took 12 years to accomplish, Dr. Pestell says. "These mice have five co-integrated transgenes."

The mice are programmed to develop breast cancer, but the researchers found that if they selectively blocked inflammation just in the breast, tumors would not develop. "This is a very novel finding," Dr. Pestell says.

They then demonstrated that this inactivation also reduced the number of cancer stem cells in the breast. "That told us that inflammation, through the action of NF-êB, is important to the growth and activity of cancer stem cells," Dr. Pestell says. "The transgenic mice are a new technology that can be used by the scientists and the pharmaceutical industry to understand the role of NFKB in different diseases including heart disease, neurodegeneration and other cancers."

The study was funded by support from the National Institutes of Health, the Dr. Ralph and Marian C. Falk Medical Research Trust, and a grant from the Pennsylvania Department of Health.

Researchers from the Nigata University of Pharmacy and Applied Life Sciences in Japan, the National Cancer Institute, the University of Western Australia, and the Lombardi Comprehensive Cancer Center at Georgetown University Medical School contributed to the study.

The authors declare no conflicts of interest.

Ed Federico | EurekAlert!
Further information:
http://www.jeffersonhospital.org/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>