Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will my breast cancer spread? Discovery may predict probability of metastasis

24.10.2011
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered a new way to model human breast cancer that could lead to new tools for predicting which breast cancers will spread and new ways to test drugs that may stop its spread. Their results are published online today in the journal Nature Medicine.

To create this improved model for breast cancer studies, the researchers grafted tumor tissue from consenting breast cancer patients directly into mouse mammary glands, rather than the traditional approach, where the cancer cells are grown, or cultured, in the laboratory. They discovered that the grafts remained virtually identical to the original human breast cancer in structure, genetic makeup and behavior, unlike the methods that rely on cell cultures.

"The most surprising result was that the tumor grafts spread from the original site, or metastasized, just as they did in the human patients," said the study's principal investigator Alana Welm, Ph.D, assistant professor in the Department of Oncological Sciences and an HCI investigator . "For example, grafts of tumor tissue from patients whose cancer had spread to the lung also spread to the lungs of the mice that received them."

Most breast cancer deaths result from the disease spreading to other areas of the body such as the lymphatic system, lungs, liver, bones or brain.

In addition, researchers found that the successful grafts were nearly all from patients who developed the most aggressive forms of breast cancer and ultimately died of their disease.. This result reveals the modeling method's potential as a tool that, soon after a breast cancer diagnosis, could identify whether the tumor would be likely to spread, helping doctors select the best treatment approach for an individual patient's form of the disease.

"There is also the potential to develop similar models for other cancers using this method," says Welm. "We are already working on this with colon cancer tissues."

The study is a cooperative effort of HCI's Breast Disease Oriented Team, comprised of surgeons, medical and radiation oncologists, pathologists, and laboratory scientists. Other contributors included HCI's Comparative Oncology Resource, the Tissue Resource and Application Core, and ARUP Research Institute. The work was supported by funding from the U.S. Department of Defense Breast Cancer Research Program, the American Association for Cancer Research, the Breast Cancer Research Foundation, and Huntsman Cancer Foundation.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>