Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will my breast cancer spread? Discovery may predict probability of metastasis

24.10.2011
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered a new way to model human breast cancer that could lead to new tools for predicting which breast cancers will spread and new ways to test drugs that may stop its spread. Their results are published online today in the journal Nature Medicine.

To create this improved model for breast cancer studies, the researchers grafted tumor tissue from consenting breast cancer patients directly into mouse mammary glands, rather than the traditional approach, where the cancer cells are grown, or cultured, in the laboratory. They discovered that the grafts remained virtually identical to the original human breast cancer in structure, genetic makeup and behavior, unlike the methods that rely on cell cultures.

"The most surprising result was that the tumor grafts spread from the original site, or metastasized, just as they did in the human patients," said the study's principal investigator Alana Welm, Ph.D, assistant professor in the Department of Oncological Sciences and an HCI investigator . "For example, grafts of tumor tissue from patients whose cancer had spread to the lung also spread to the lungs of the mice that received them."

Most breast cancer deaths result from the disease spreading to other areas of the body such as the lymphatic system, lungs, liver, bones or brain.

In addition, researchers found that the successful grafts were nearly all from patients who developed the most aggressive forms of breast cancer and ultimately died of their disease.. This result reveals the modeling method's potential as a tool that, soon after a breast cancer diagnosis, could identify whether the tumor would be likely to spread, helping doctors select the best treatment approach for an individual patient's form of the disease.

"There is also the potential to develop similar models for other cancers using this method," says Welm. "We are already working on this with colon cancer tissues."

The study is a cooperative effort of HCI's Breast Disease Oriented Team, comprised of surgeons, medical and radiation oncologists, pathologists, and laboratory scientists. Other contributors included HCI's Comparative Oncology Resource, the Tissue Resource and Application Core, and ARUP Research Institute. The work was supported by funding from the U.S. Department of Defense Breast Cancer Research Program, the American Association for Cancer Research, the Breast Cancer Research Foundation, and Huntsman Cancer Foundation.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>