Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will my breast cancer spread? Discovery may predict probability of metastasis

24.10.2011
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered a new way to model human breast cancer that could lead to new tools for predicting which breast cancers will spread and new ways to test drugs that may stop its spread. Their results are published online today in the journal Nature Medicine.

To create this improved model for breast cancer studies, the researchers grafted tumor tissue from consenting breast cancer patients directly into mouse mammary glands, rather than the traditional approach, where the cancer cells are grown, or cultured, in the laboratory. They discovered that the grafts remained virtually identical to the original human breast cancer in structure, genetic makeup and behavior, unlike the methods that rely on cell cultures.

"The most surprising result was that the tumor grafts spread from the original site, or metastasized, just as they did in the human patients," said the study's principal investigator Alana Welm, Ph.D, assistant professor in the Department of Oncological Sciences and an HCI investigator . "For example, grafts of tumor tissue from patients whose cancer had spread to the lung also spread to the lungs of the mice that received them."

Most breast cancer deaths result from the disease spreading to other areas of the body such as the lymphatic system, lungs, liver, bones or brain.

In addition, researchers found that the successful grafts were nearly all from patients who developed the most aggressive forms of breast cancer and ultimately died of their disease.. This result reveals the modeling method's potential as a tool that, soon after a breast cancer diagnosis, could identify whether the tumor would be likely to spread, helping doctors select the best treatment approach for an individual patient's form of the disease.

"There is also the potential to develop similar models for other cancers using this method," says Welm. "We are already working on this with colon cancer tissues."

The study is a cooperative effort of HCI's Breast Disease Oriented Team, comprised of surgeons, medical and radiation oncologists, pathologists, and laboratory scientists. Other contributors included HCI's Comparative Oncology Resource, the Tissue Resource and Application Core, and ARUP Research Institute. The work was supported by funding from the U.S. Department of Defense Breast Cancer Research Program, the American Association for Cancer Research, the Breast Cancer Research Foundation, and Huntsman Cancer Foundation.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>