Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer and heart disease may have common roots

21.12.2011
Women who are at risk for breast cancer may also be at greater risk for heart disease

Women who are at risk for breast cancer may also be at greater risk for heart disease, new research has found.

The majority of women with hereditary breast and ovarian cancer have a mutated form of the BRCA1 or BRCA2 genes, which normally suppress the growth of breast and ovarian tumours.

Dr. Subodh Verma, a cardiac surgeon at St. Michael's Hospital, said his research team was surprised to discover the genes also regulate heart function.

Following a heart attack, mice with the mutated BRCA1 gene had a three-to-five times higher rate of death. This was largely due to the development of profound heart failure, possibly because their heart attacks were twice as severe as those in mice who did not have the mutated gene.

A similar two-fold increase in heart failure was observed when mice with a mutated BRCA1 or BRAC2 gene were treated with doxorubicin, one of the most common chemotherapy drugs for patients with breast cancer. In addition to studies in mice, the authors also verified this observation in human tissues.

The researchers believe that the mutated BRCA1/2 prevents DNA repair in muscle cells that is essential to recovery after a heart attack.

Their findings were published in the journals Nature Communications and Journal of Biological Chemistry.

"Our findings suggest that individuals who are at risk of breast cancer may also be at a previously unrecognized risk of heart disease," Dr. Verma said. "More importantly, we now understand that breast cancer and heart disease -- the two leading causes of death for Canadian women – have a common biological basis, a common soil."

Dr. Verma emphasized that these findings may have important implications for patients. Knowing that the BRCA1/2 gene is essential to DNA repair may lead to future treatments for anyone with heart disease, a leading cause of death worldwide. Women who carry this mutated gene now know they may also be at a higher risk for developing heart disease in addition to the risk of developing cancer.

Dr. Christine Brezden-Masley, an oncologist at St. Michael's and a co-author of the paper, said that while physicians knew doxorubicin was associated with heart failure, the new research shows women with the mutated BRCA1/2 gene are particularly sensitive to its toxicity.

"What this means is that when a patient has the mutated gene, I now have to think about how much doxorubicin I'm going to give them or whether we should consider an alternate therapy," Dr. Brezden-Masley said.

About St. Michael's Hospital

St. Michael's Hospital provides compassionate care to all who enter its doors. The hospital also provides outstanding medical education to future health care professionals in more than 23 academic disciplines. Critical care and trauma, heart disease, neurosurgery, diabetes, cancer care, and care of the homeless are among the Hospital's recognized areas of expertise. Through the Keenan Research Centre and the Li Ka Shing International Healthcare Education Center, which make up the Li Ka Shing Knowledge Institute, research and education at St. Michael's Hospital are recognized and make an impact around the world. Founded in 1892, the hospital is fully affiliated with the University of Toronto.

Leslie Shepherd | EurekAlert!
Further information:
http://www.smh.ca

Further reports about: BRCA1 DNA DNA repair Shing breast breast cancer heart disease heart failure human tissue mutated gene

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>