Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough therapy allows 4 paraplegic men to voluntarily move their legs

08.04.2014

Four young men who have been paralyzed for years achieved groundbreaking progress — moving their legs — as a result of epidural electrical stimulation of the spinal cord, an international team of life scientists reports today in the medical journal Brain.

The study, conducted by researchers from the University of Louisville, UCLA and the Pavlov Institute of Physiology, was funded in part by the Christopher and Dana Reeve Foundation and the National Institutes of Health.

All four participants were classified as suffering from chronic, motor complete spinal cord injuries and were unable to move their lower extremities prior to the implantation of an epidural stimulator. The stimulator delivers a continuous electrical current to the participants' lower spinal cords, mimicking signals the brain normally transmits to initiate movement.

The research builds on an initial study, published in May 2011 in the journal The Lancet, that evaluated the effects of epidural stimulation in the first participant, Rob Summers of Portland, Ore., who recovered a number of motor functions as a result of the intervention.

Now, three years later, the key findings documented in Brain detail the impact of epidural stimulation in a total four participants, including new tests conducted on Summers. Summers was paralyzed after being struck by a vehicle, and the other three participants were paralyzed in auto or motorcycle accidents.

What is revolutionary, the scientists said, is that the second, third and fourth participants — Kent Stephenson of Mt. Pleasant, Texas; Andrew Meas of Louisville, Ky.; and Dustin Shillcox of Green River, Wyo. — were able to execute voluntary movements immediately following the implantation and activation of the stimulator.

The participants' results and recovery time were unexpected, which led researchers to speculate that some pathways may be intact post-injury and therefore able to facilitate voluntary movements.

"Two of the four subjects were diagnosed as motor and sensory complete injured with no chance of recovery at all," said lead author Claudia Angeli, a senior researcher with the Human Locomotor Research Center at Frazier Rehab Institute and an assistant professor at University of Louisville's Kentucky Spinal Cord Injury Research Center (KSCIRC). "Because of epidural stimulation, they can now voluntarily move their hips, ankles and toes. This is groundbreaking for the entire field and offers a new outlook that the spinal cord, even after a severe injury, has great potential for functional recovery."

In epidural stimulation, the electrical current is applied at varying frequencies and intensities to specific locations on the lumbosacral spinal cord, corresponding to the dense neural bundles that largely control the movement of the hips, knees, ankles and toes. With the participants, once the signal was triggered, the spinal cord reengaged its neural network to control and direct muscle movements.

When coupling the intervention with rehabilitative therapy, the impact of epidural stimulation intensified. Over the course of the study, the researchers noted that the participants were able to activate movements with less stimulation, demonstrating the ability of the spinal network to learn and improve nerve functions.

"We have uncovered a fundamentally new intervention strategy that can dramatically affect recovery of voluntary movement in individuals with complete paralysis, even years after injury," said Susan Harkema, a University of Louisville professor and rehabilitation research director at KSCIRC, Frazier Rehab Institute, director of the Reeve Foundation's NeuroRecovery Network and primary author of The Lancet article. "The belief that no recovery is possible and complete paralysis is permanent has been challenged."

Beyond regaining voluntary movement, the research participants have displayed a myriad of improvements in their overall health, including increases in muscle mass and regulation of their blood pressure, as well as reduced fatigue and dramatic improvements to their sense of well-being.

Additionally, all four men were able to bear weight independently, as reported by the team, which also includes UCLA's V. Reggie Edgerton and Yury Gerasimenko, professor and director of the laboratory of movement physiology at Russia's Pavlov Institute in St. Petersburg and a researcher in the UCLA Department of Integrative Biology and Physiology.

"This research brings up an amazing number of possibilities for how we can develop interventions that will help people recover movement they have lost," said Edgerton, a distinguished professor of integrative biology and physiology, neurobiology, and neurosurgery at UCLA and a co-author of the research. "The circuitry in the spinal cord is remarkably resilient. Once you get them up and active, many physiological systems that are intricately connected and that were dormant come back into play."

Providing hope for people living with paralysis

The study offers hope that clinical therapies can be developed to advance treatment for the nearly 6 million Americans living with paralysis, including nearly 1.3 million with spinal cord injuries.

The four paralyzed participants ranged in neurological level from C7–T5 and were at least two years post-injury at the time of the intervention. Two of them had been rated "A" on the American Spinal Injury Association's classification system, meaning they had absolutely no sensation or cognition below the site of their injury; the researchers were highly sceptical that these men would elicit any voluntary movement as a result of the intervention.

However, with the application of epidural stimulation, all four participants recovered voluntary control of their lower extremities, surprising the scientists, who believed at least some of the sensory pathway must be intact for epidural stimulation to be successful.

"With this study, the investigators show that their findings about a motor complete patient regaining movement, as published three years ago in The Lancet, were not an anomaly," said Susan Howley, executive vice president for research at the Reeve Foundation. "At the present time, other than standard medical care, there are no effective evidence-based treatments for chronic spinal cord injury. However, the implications of this study for the entire field are quite profound, and we can now envision a day when epidural stimulation might be part of a cocktail of therapies used to treat paralysis."

Investing in epidural stimulation

The research was funded by the Reeve Foundation and the National Institutes of Health (RO1EB007615, P30 GM103507), the Leona M. and Harry B. Helmsley Charitable Trust, the Kessler Foundation, the University of Louisville, the Jewish Hospital and St. Mary's Foundation, the Frazier Rehab Institute and University Hospital.

"When we first learned that a patient had regained voluntary control as a result of the therapy, we were cautiously optimistic," said Roderic Pettigrew, director of the National Institute of Biomedical Imaging and Bioengineering, which provided support for the study. "Now that spinal stimulation has been successful in four out of four patients, there is evidence to suggest a large cohort of individuals, previously with little realistic hope of any meaningful recovery from spinal cord injury, may benefit from this intervention."

"This is a wake-up call for how we see motor complete spinal cord injury," said Edgerton, who has been conducting fundamental research in this area for 38 years and is a member of the Reeve Foundation's International Research Consortium on Spinal Cord Injury. "We don't have to necessarily rely on regrowth of nerves in order to regain function. The fact that we've observed this in four out of four people suggests that this is actually a common phenomenon in those diagnosed with complete paralysis."

The scientists are optimistic that the therapy intervention will continue to result in improved motor functions. In fact, based on observations from the research, there is strong evidence that with continued advancements of the epidural stimulator, individuals with complete spinal cord injuries will be able to bear weight independently, maintain balance and work towards stepping, the scientists said.

###

For more information about epidural stimulation studies and other spinal cord injury research, please visit http://chartingourcourse.org/research/victory.html.

For more information on the Reeve Foundation, visit http://www.christopherreeve.org/epi.

The journal Brain is published by Oxford University Press.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

Further reports about: UCLA individuals injuries injury movement movements paralysis paraplegic participants spinal therapy

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

A perfect sun-storm

28.09.2016 | Earth Sciences

New welding process joins dissimilar sheets better

28.09.2016 | Power and Electrical Engineering

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>