Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough by Temple researchers could lead to new treatment for heart attack

06.11.2013
The stop and start of blood flow to the heart during and after a heart attack causes severe damage to heart cells, reducing their capacity to function and potentially causing their death.

But a recent study led by researchers at Temple University School of Medicine suggests that it is possible to limit the extent of that damage using a drug. In experiments in mice that recapitulated a human clinical scenario, they discovered that inhibition of a heart protein called TNNI3K reduced damage from heart attack and protected the heart from further injury.

The findings have significant potential for translation into heart attack patients in a clinical setting. "Many times, what is done in a lab setting can't be done in patients," explained Ronald Vagnozzi, PhD, lead author on the new study, which appeared October 16 in Science Translational Medicine. "But we were interested in a real-world scenario."

Working with senior investigators Thomas L. Force, MD, Professor and Clinical Director at Temple University School of Medicine's (TUSM) Center for Translational Medicine, and Muniswamy Madesh, PhD, Assistant Professor in Temple's Department of Biochemistry, Cardiovascular Research Center, and Center for Translational Medicine, Vagnozzi created a real-world clinical scenario in mice by mimicking blockage of an artery to induce heart attack and then administering a TNNI3K inhibitor. When cardiac function was subsequently improved in treated mice versus untreated controls, Vagnozzi and colleagues realized that a TNNI3K inhibitor could have important clinical benefits for human patients.

"TNNI3K is found only in the heart, which makes it interesting biologically and therapeutically," Vagnozzi said. "Although its function was not well understood, TNNI3K lent itself to being a potential therapeutic target for heart attack."

The researchers found that TNNI3K expression is elevated in patients who are suffering from heart failure, which can develop in the years following heart attack. To explore the significance of that elevation, they engineered mice to overexpress TNNI3K. They also created a second set of engineered mice, in which the protein was deleted. They then measured the animals' response to heart attack.

When overexpressed, Vagnozzi and colleagues found that TNNI3K promoted the injury of heart tissue from ischemia (blockage of blood flow) and reperfusion (restoration of blood flow) during and after a heart attack. TNNI3K overexpression in heart cells encouraged the production of superoxide, a reactive molecule from mitochondria, and activated p38 mitogen-activated protein kinase (MAPK), an enzyme that responds to stress signals in cells. The combined result of those activities was impaired mitochondrial function and heart cell death, which worsened ischemia/reperfusion injury. The opposite occurred in mice in which TNNI3K had been deleted—superoxide production and p38 activation were reduced, and injury to the heart was limited. Reductions in heart dysfunction and fibrosis (hardening of heart tissue) were also observed.

The team next collaborated with the pharmaceutical company GlaxoSmithKline (GSK) to identify compounds that were capable of blocking TNNI3K activity. Treatment of wild-type (nonengineered) mice with the compounds following heart attack produced effects that were similar to those observed in mice with TNNI3K deletion.

The new findings open the way to a large-animal study and the development of a TNNI3K inhibitor that can be used in humans. According to Force, the team is planning to move ahead with a large-animal study, which will determine whether the drugs are effective in animals other than mice and allow for the development of pharmacological and safety profiles of the compounds. "Because TNNI3K is only expressed in the heart, drugs targeting it should be reasonably safe," Force noted.

A major aim of Temple's Center for Translational Medicine is facilitating the delivery of new medicines to patients in the clinic, which could happen for TNNI3K inhibitors, if they are proven safe and effective in the next round of animal studies. According to Vagnozzi, who is now at Cincinnati Children's Hospital Medical Center, the continued collaboratory effort between Temple and GSK will be a key component in moving the drugs into the clinic.

Vagnozzi and colleagues' paper was selected for F1000Prime, in which articles in biology and medical research are chosen and their importance rated by leading scientists and clinicians.

Other researchers contributing to the work include Gregory J. Gatto Jr., Lara S. Kallander, Victoria L. T. Ballard, Brian G. Lawhorn, Patrick Stoy, Joanne Philp, and John J. Lepore with the Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GlaxoSmithKline; Nicholas E. Hoffman, Karthik Mallilankaraman, and Erhe Gao at Temple's Center for Translational Medicine; Alan P. Graves with Platform Technology and Sciences, GlaxoSmithKline; and Yoshiro Naito from the Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine in Japan.

The research was jointly funded by National Heart, Lung, and Blood Institute grants HL-061688, HL-091799, HL-106380, and HL-086699; an American Heart Association predoctoral fellowship; a Shared Instrumentation Program grant, 1S10RR027327; and the Scarperi family.

About Temple Health

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System and by Temple University School of Medicine.

Temple University Health System (TUHS) is a $1.4 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with Temple University School of Medicine.

Temple University School of Medicine (TUSM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 840 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, Temple University School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, TUSM is among the top 10 most applied-to medical schools in the nation.

Jeremy Walter | EurekAlert!
Further information:
http://www.temple.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>