Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough model holds promise for treating Graves' disease

03.09.2013
Animal model first to simulate eye complications of thyroid disorder

Researchers have developed the first animal model simulating the eye complications associated with the thyroid condition Graves' disease, a breakthrough that could pave the way for better treatments, according to a recent study accepted for publication in The Endocrine Society's journal Endocrinology.

Graves' disease is an autoimmune disorder that causes the body to produce antibodies that attack the thyroid gland. The condition causes the thyroid gland to become overactive and produce too much thyroid hormone. If left untreated, it can lead to heart failure or osteoporosis.

Graves' disease is most common in women. About 1 percent of Caucasian women have autoimmune thyroid disease where the thyroid is either over- or underactive. Among those who have Graves' disease, more than half develop eye complications, according to the study's lead author, J. Paul Banga, PhD, of King's College London School of Medicine in the United Kingdom. These complications include Graves' orbitopathy, where swelling of tissue behind the eyes causes them to bulge outward. The condition can cause pain and lead to blindness.

"Current treatment options for eye complications associated with Graves' disease are limited," Banga said. "Better treatments are needed for Graves' orbitopathy to reduce the risks of permanent disfigurement and social stigma. Having an animal model to test preventative treatments could lead to important advances that will ultimately benefit people with Graves' disease."

The condition is currently treated with steroids, which can cause undesirable side effects such as weight gain and osteoporosis.

Although researchers have developed animal models of Graves' disease in the past, these models were challenging to replicate and none were able to simulate the eye problems seen in people with Graves' disease.

To develop the new model, researchers injected mice with small circular, double-stranded DNA molecules called plasmids. Over the course of three months, scientists used electronic pulses to ensure the DNA molecules were absorbed into the cells of each mouse. Mice that underwent this procedure developed eye problems like those seen in human patients who have Graves' disease, while the control group of mice did not develop these complications.

"The new animal model opens the door for scientists to conduct needed mechanistic studies and identify preventative therapies to minimize this painful and debilitating condition," Banga said.

Other researchers working on the study include: S. Moshkelgosha of King's College London School of Medicine; P-W. So and N. Deasy of King's College London; and S. Diaz-Cano of King's College Hospital NHS Trust in London.

The article, "Retrobulbar Inflammation, Adipogenesis and Acute Orbital Congestion in a Preclinical Female Mouse Model of Graves' Orbitopathy Induced by Thyrotropin Receptor Plasmid-in Vivo Electroporation," will be published in the September issue of Endocrinology.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 16,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at https://twitter.com/#!/EndoMedia.

Jenni Glenn Gingery | EurekAlert!
Further information:
http://www.endocrine.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>