Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough model holds promise for treating Graves' disease

03.09.2013
Animal model first to simulate eye complications of thyroid disorder

Researchers have developed the first animal model simulating the eye complications associated with the thyroid condition Graves' disease, a breakthrough that could pave the way for better treatments, according to a recent study accepted for publication in The Endocrine Society's journal Endocrinology.

Graves' disease is an autoimmune disorder that causes the body to produce antibodies that attack the thyroid gland. The condition causes the thyroid gland to become overactive and produce too much thyroid hormone. If left untreated, it can lead to heart failure or osteoporosis.

Graves' disease is most common in women. About 1 percent of Caucasian women have autoimmune thyroid disease where the thyroid is either over- or underactive. Among those who have Graves' disease, more than half develop eye complications, according to the study's lead author, J. Paul Banga, PhD, of King's College London School of Medicine in the United Kingdom. These complications include Graves' orbitopathy, where swelling of tissue behind the eyes causes them to bulge outward. The condition can cause pain and lead to blindness.

"Current treatment options for eye complications associated with Graves' disease are limited," Banga said. "Better treatments are needed for Graves' orbitopathy to reduce the risks of permanent disfigurement and social stigma. Having an animal model to test preventative treatments could lead to important advances that will ultimately benefit people with Graves' disease."

The condition is currently treated with steroids, which can cause undesirable side effects such as weight gain and osteoporosis.

Although researchers have developed animal models of Graves' disease in the past, these models were challenging to replicate and none were able to simulate the eye problems seen in people with Graves' disease.

To develop the new model, researchers injected mice with small circular, double-stranded DNA molecules called plasmids. Over the course of three months, scientists used electronic pulses to ensure the DNA molecules were absorbed into the cells of each mouse. Mice that underwent this procedure developed eye problems like those seen in human patients who have Graves' disease, while the control group of mice did not develop these complications.

"The new animal model opens the door for scientists to conduct needed mechanistic studies and identify preventative therapies to minimize this painful and debilitating condition," Banga said.

Other researchers working on the study include: S. Moshkelgosha of King's College London School of Medicine; P-W. So and N. Deasy of King's College London; and S. Diaz-Cano of King's College Hospital NHS Trust in London.

The article, "Retrobulbar Inflammation, Adipogenesis and Acute Orbital Congestion in a Preclinical Female Mouse Model of Graves' Orbitopathy Induced by Thyrotropin Receptor Plasmid-in Vivo Electroporation," will be published in the September issue of Endocrinology.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 16,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at https://twitter.com/#!/EndoMedia.

Jenni Glenn Gingery | EurekAlert!
Further information:
http://www.endocrine.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>