Breakthrough Breast Cancer Therapy Reduces Mastectomies; Saves Breast

A new treatment developed and tested by University of Oklahoma researchers not only killed large cancer tumors, but reduced the need for mastectomies by almost 90 percent. The latest results appear in an upcoming issue of the Annals of Surgical Oncology.

Building on this success, researchers at the OU Health Sciences Center, plan to start the next phase of clinical trials this year to test the therapy on even larger tumors.

“This therapy is a major advancement for women with later stage breast cancer. Right now, most patients with large tumors lose their breast. With this treatment along with chemotherapy, we were able to kill the cancer and save the breast tissue,” said William Dooley, M.D., a researcher at the OU Cancer Institute and the director of surgical oncology at OU Medicine.

Dr. Dooley is leading a group of researchers from OU, the Massachusetts Institute of Technology, the Los Angeles Biomedical Research Institute, the Comprehensive Breast Center in Florida and St. Joseph’s Hospital in California.

They are working on a treatment called Focused Microwave Thermotherapy. The technique, which was approved by the U.S. Food and Drug Administration, uses a modified version of the microwave technology behind the “Star Wars” defense system.

In the most recent study, researchers tested the therapy on tumors that were an inch to an inch and a half in size. These large tumors usually require mastectomies. When researchers used the heating therapy within two hours of patients receiving chemotherapy, the tumor was more susceptible to the chemotherapy and shrunk rapidly. The percentage of patients needing mastectomies was reduced from 75 percent to 7 percent.

“The trial was very successful. We were able to completely reverse those odds,” Dooley said. “We redesigned the machine and will begin clinical trials this year to determine whether the therapy works on tumors that are larger than one and a half inches and smaller than 5 inches in size.”

In theory, Dooley said the technique could be used on any organ that could be “held relatively still.” Scientists are now working to integrate heat-sensitive nanotechnology that would more precisely target cancer cells. They also plan to study a byproduct of the rapid disintegration of the tumor – a boosted immune system. Dooley said it looks like the rapid release of cancer proteins into the blood stream is causing an immune response that could reduce the chance of cancer recurrence.

Find the latest research results online at springerlink.com/content/g105331202416323/.

As Oklahoma’s only comprehensive academic cancer center, the OU Cancer Institute is raising the standard of cancer treatment in the state through research and education. The center is working toward an application to the National Cancer Institute to be designated as a “Comprehensive Cancer Center,” the gold standard of cancer research and care. Later this year, the OU Cancer Institute will move into a new 210,000-square-foot building. The facility will bring all outpatient cancer programs under one roof at the University of Oklahoma Health Sciences Center.

Media Contact

Diane Clay EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors