Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain study reveals how successful students overcome math anxiety

20.10.2011
Success in math takes practice to control fears

Using brain-imaging technology for the first time with people experiencing mathematics anxiety, University of Chicago scientists have gained new insights into how some students are able to overcome their fears and succeed in math.

For the highly math anxious, researchers found a strong link between math success and activity in a network of brain areas in the frontal and parietal lobes involved in controlling attention and regulating negative emotional reactions. This response kicked in at the very mention of having to solve a mathematics problem.

Teachers as well as students can use the information to improve performance in mathematics, said Sian Beilock, associate professor in psychology at the University of Chicago. Beilock and PhD student Ian Lyons report their findings in the article, "Mathematics Anxiety: Separating the Math from the Anxiety," published Oct. 20 in the journal Cerebral Cortex.

"Classroom practices that help students focus their attention and engage in the math task at hand may help eliminate the poor performance brought on by math anxiety," said Beilock, a leading expert on mathematics anxiety and author of the book Choke: What The Secrets Of The Brain Reveal About Getting It Right When You Have To.

Instead of feeling anxious about an impending math task, students who could focus their attention were able to complete difficult math problems more successfully. Perhaps counter-intuitively, their success wasn't just about activating areas of the brain involved in math calculation. For math-anxious individuals to succeed, they need to focus on controlling their emotions, Beilock said.

Lyons and Beilock said their work implies that teaching students to control their emotions prior to doing math may be the best way to overcome the math difficulties that often go along with math anxiety. Without this initial step, simply providing additional math instruction or allowing students to become distracted by trying to squelch emotions once a math exam has begun is likely to prove ineffective in producing math success.

The study, which the National Science Foundation funded, began by administering a questionnaire to a group of UChicago students to determine if they had math anxiety. Students answered questions about how anxious they felt when registering for a math course, walking to a challenging math class, being handed a math textbook and so on. Lyons and Beilock then invited a group of students who were especially anxious about these math-related tasks to have their brains scanned using functional magnetic resonance imaging (fMRI) while they performed difficult math problems and a similarly difficult spelling task. A group of non-math-anxious students was selected as a control group.

In the fMRI scanner, students watched a computer screen for different cues in the form of simple, color-coded shapes. One shape indicated to students they were about to answer questions that tapped their spelling skills, and another shape indicated they were about to do a series of math problems. After a short delay, students then performed a few math or spelling problems. By analyzing brain responses during the cue and problems separately, Lyons and Beilock were able to look at what went on in highly math-anxious student's heads, even before the actual math began.

For the highly math-anxious, the researchers found a strong connection between math performance and activity in a network of brain areas in the frontal and parietal lobes.

The more these frontal and parietal regions were activated in math-anxious students when anticipating an impending math task, the more their math performance looked like the non-math-anxious control group. Indeed, highly math-anxious students who showed little activation in these regions when preparing to do math got only 68 percent of math problems correct. But those who showed the strongest activation got 83 percent correct — nearly on par with low math-anxious controls (88 percent correct). This relationship was not seen for the spelling task.

The study found that for the highly math-anxious students who performed well on the math task, the brain activity that started during the anticipation phase initiated a cascade of brain activity during completion of the math task itself. This activity did not involve areas typically associated with performing numerical calculations. Rather, it was seen in subcortical structures — especially caudate and nucleus accumbens — associated with motivation and juggling risks and rewards with the demands of the task at hand.

"Essentially, overcoming math anxiety appears to be less about what you know and more about convincing yourself to just buckle down and get to it," Beilock said. "But if you wait till the math exam has already started to deal with your anxiety, it's already too late," Lyons added.

For students who were not anxious about math to begin with, there was no relationship between activation in brain areas important for focusing attention, controlling emotion and math performance. This shows that approaching math may be entirely different for high and low math-anxious students. "Think about walking across a suspension bridge if you're afraid of heights versus if you're not — completely different ballgame," Lyons said.

The study also sheds light on how people who get nervous about doing math can put their fears aside in everyday situations, such as balancing a checkbook or figuring out a tip among friends or coworkers. Taking a few breaths before jumping in can help one focus less on preparing to do math, and more on what actually needs to be done. "When you let your brain do its job, it usually will," Lyons said. "If doing math makes you anxious, then your first task is to calm yourself down."

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Brain Classroom practices Mathematics Anxiety anxiety brain area

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>