Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain study reveals how successful students overcome math anxiety

20.10.2011
Success in math takes practice to control fears

Using brain-imaging technology for the first time with people experiencing mathematics anxiety, University of Chicago scientists have gained new insights into how some students are able to overcome their fears and succeed in math.

For the highly math anxious, researchers found a strong link between math success and activity in a network of brain areas in the frontal and parietal lobes involved in controlling attention and regulating negative emotional reactions. This response kicked in at the very mention of having to solve a mathematics problem.

Teachers as well as students can use the information to improve performance in mathematics, said Sian Beilock, associate professor in psychology at the University of Chicago. Beilock and PhD student Ian Lyons report their findings in the article, "Mathematics Anxiety: Separating the Math from the Anxiety," published Oct. 20 in the journal Cerebral Cortex.

"Classroom practices that help students focus their attention and engage in the math task at hand may help eliminate the poor performance brought on by math anxiety," said Beilock, a leading expert on mathematics anxiety and author of the book Choke: What The Secrets Of The Brain Reveal About Getting It Right When You Have To.

Instead of feeling anxious about an impending math task, students who could focus their attention were able to complete difficult math problems more successfully. Perhaps counter-intuitively, their success wasn't just about activating areas of the brain involved in math calculation. For math-anxious individuals to succeed, they need to focus on controlling their emotions, Beilock said.

Lyons and Beilock said their work implies that teaching students to control their emotions prior to doing math may be the best way to overcome the math difficulties that often go along with math anxiety. Without this initial step, simply providing additional math instruction or allowing students to become distracted by trying to squelch emotions once a math exam has begun is likely to prove ineffective in producing math success.

The study, which the National Science Foundation funded, began by administering a questionnaire to a group of UChicago students to determine if they had math anxiety. Students answered questions about how anxious they felt when registering for a math course, walking to a challenging math class, being handed a math textbook and so on. Lyons and Beilock then invited a group of students who were especially anxious about these math-related tasks to have their brains scanned using functional magnetic resonance imaging (fMRI) while they performed difficult math problems and a similarly difficult spelling task. A group of non-math-anxious students was selected as a control group.

In the fMRI scanner, students watched a computer screen for different cues in the form of simple, color-coded shapes. One shape indicated to students they were about to answer questions that tapped their spelling skills, and another shape indicated they were about to do a series of math problems. After a short delay, students then performed a few math or spelling problems. By analyzing brain responses during the cue and problems separately, Lyons and Beilock were able to look at what went on in highly math-anxious student's heads, even before the actual math began.

For the highly math-anxious, the researchers found a strong connection between math performance and activity in a network of brain areas in the frontal and parietal lobes.

The more these frontal and parietal regions were activated in math-anxious students when anticipating an impending math task, the more their math performance looked like the non-math-anxious control group. Indeed, highly math-anxious students who showed little activation in these regions when preparing to do math got only 68 percent of math problems correct. But those who showed the strongest activation got 83 percent correct — nearly on par with low math-anxious controls (88 percent correct). This relationship was not seen for the spelling task.

The study found that for the highly math-anxious students who performed well on the math task, the brain activity that started during the anticipation phase initiated a cascade of brain activity during completion of the math task itself. This activity did not involve areas typically associated with performing numerical calculations. Rather, it was seen in subcortical structures — especially caudate and nucleus accumbens — associated with motivation and juggling risks and rewards with the demands of the task at hand.

"Essentially, overcoming math anxiety appears to be less about what you know and more about convincing yourself to just buckle down and get to it," Beilock said. "But if you wait till the math exam has already started to deal with your anxiety, it's already too late," Lyons added.

For students who were not anxious about math to begin with, there was no relationship between activation in brain areas important for focusing attention, controlling emotion and math performance. This shows that approaching math may be entirely different for high and low math-anxious students. "Think about walking across a suspension bridge if you're afraid of heights versus if you're not — completely different ballgame," Lyons said.

The study also sheds light on how people who get nervous about doing math can put their fears aside in everyday situations, such as balancing a checkbook or figuring out a tip among friends or coworkers. Taking a few breaths before jumping in can help one focus less on preparing to do math, and more on what actually needs to be done. "When you let your brain do its job, it usually will," Lyons said. "If doing math makes you anxious, then your first task is to calm yourself down."

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Brain Classroom practices Mathematics Anxiety anxiety brain area

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>