Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain regions 'tune' activity to enable attention

16.01.2014
The brain appears to synchronize the activity of different brain regions to make it possible for a person to pay attention or concentrate on a task, scientists at Washington University School of Medicine in St. Louis have learned.

Researchers think the process, roughly akin to tuning multiple walkie-talkies to the same frequency, may help establish clear channels for communication between brain areas that detect sensory stimuli.

"We think the brain not only puts regions that facilitate attention on alert but also makes sure those regions have open lines for calling each other," said first author Amy Daitch, a graduate student researcher.

The results are available in the Proceedings of the National Academy of Sciences.

People who suffer from brain injuries or strokes often have problems paying attention and concentrating.

"Attention deficits in brain injury have been thought of as a loss of the resources needed to concentrate on a task," said senior author Maurizio Corbetta, MD, the Norman J. Stupp Professor of Neurology. "However, this study shows that temporal alignment of responses in different brain areas is also a very important mechanism that contributes to attention and could be impaired by brain injury."

Attention lets people ignore irrelevant sensory stimuli, like a driver disregarding a ringing cell phone, and pay attention to important stimuli, like a deer stepping onto the road in front of the car.

To analyze brain changes linked to attention, the scientists used grids of electrodes temporarily implanted onto the brains of patients with epilepsy. Co-senior author Eric Leuthardt, MD, associate professor of neurosurgery and bioengineering, uses the grids to map for surgical removal of brain tissues that contribute to uncontrollable seizures.

With patient permission, the grids also can allow Leuthardt's lab to study human brain activity at a level of detail unavailable via any other method. Normally, Corbetta and his colleagues investigate attention using various forms of magnetic resonance imaging (MRI), which can detect changes in brain activity that occur every 2 to 3 seconds. But with the grids in place, Corbetta and Leuthardt can study the changes that occur in milliseconds.

Before grid implantation, the scientists scanned the brains of seven epilepsy patients, using MRI to map regions known to contribute to attention. With the grids in place, the researchers monitored brain cells as the patients watched for visual targets, directing their attention to different locations on a computer screen without moving their eyes. When patients saw the targets, they pressed a button to let the scientists know they had seen them.

"We analyzed brain oscillations that reflect fluctuations in excitability of a local brain region; in other words, how difficult or easy it is for a neuron to respond to an input," Daitch said. "If areas of the brain involved in detecting a stimulus are at maximum excitability, you would be much more likely to notice the stimulus."

Excitability regularly rises and falls in the cells that make up a given brain region. But these oscillations normally are not aligned between different brain regions.

The researchers' results showed that as patients directed their attention, the brain regions most important for paying attention to visual stimuli adjusted their excitability cycles, causing them to start hitting the peaks of their cycles at the same time. In regions not involved in attention, the excitability cycles did not change.

"If the cycles of two brain regions are out of alignment, the chances that a signal from one region will get through to another region are reduced," Corbetta said.

Daitch, Corbetta and Leuthardt are investigating whether knowing not just the location, but also the tempo of the task, allows participants to bring the excitability of their brain regions into alignment more rapidly.

Funding from the James S. McDonnell Foundation, the Doris Duke Foundation, the National Institute of Mental Health (R01 MH 71920-09), the National Institute of Health (NIH) (5T32EY013360-10) and the National Science Foundation (NSF EFRI-1137211) supported this research.

Daitch AL, Sharma M, Roland JL, Astafiev SV, Bundy DT, Gaona CM, Snyder AZ, Shulman GL, Leuthardt EC, Corbetta M. Frequency-specific mechanism links human brain networks for spatial attention. Proceedings of the National Academy of Sciences, Nov. 26, 2013.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Columbia Engineering team develops targeted drug delivery to lung
03.09.2015 | Columbia University School of Engineering and Applied Science

nachricht Reward, aversion behaviors activated through same brain pathways
03.09.2015 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>