Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain may play key role in blood sugar metabolism and development of diabetes

07.11.2013
Normal blood sugar regulation is a partnership between the pancreas and the brain

A growing body of evidence suggests that the brain plays a key role in glucose regulation and the development of type 2 diabetes, researchers write in the Nov. 7 issue of the journal Nature.

If the hypothesis is correct, it may open the door to entirely new ways to prevent and treat this disease, which is projected to affect one in three adults in the United States by 2050.

In the paper, lead author Dr. Michael W. Schwartz, director of the Diabetes and Obesity Center of Excellence at the University of Washington in Seattle, and his colleagues from the Universities of Cincinnati, Michigan, and Munich, note that the brain was originally thought to play an important role in maintaining normal glucose metabolism With the discovery of insulin in the 1920s, the focus of research and diabetes care shifted to almost exclusively to insulin. Today, almost all treatments for diabetes seek to either increase insulin levels or increase the body's sensitivity to insulin.

"These drugs," the researchers write, "enjoy wide use and are effective in controlling hyperglycemia [high blood sugar levels], the hallmark of type 2 diabetes, but they address the consequence of diabetes more than the underlying causes, and thus control rather than cure the disease."

New research, they write, suggests that normal glucose regulation depends on a partnership between the insulin-producing cells of the pancreas, the pancreatic islet cells, and neuronal circuits in the hypothalamus and other brain areas that are intimately involved in maintaining normal glucose levels. The development of diabetes type 2, the authors argue, requires a failure of both the islet-cell system and this brain-centered system for regulating blood sugar levels .

In their paper, the researchers review both animal and human studies that indicate the powerful effect this brain-centered regulatory system has on blood glucose levels independent of the action of insulin. One such mechanism by which the system promotes glucose uptake by tissues is by stimulating what is called "glucose effectiveness." As this process accounts for almost 50 percent of normal glucose uptake, it rivals the impact of insulin-dependent mechanisms driven by the islet cells in the pancreas.

The findings lead the researchers to propose a two-system model of regulating blood sugar levels composed of the islet-cell system, which responds to a rise in glucose levels by primarily by releasing insulin, and the brain-centered system that enhances insulin-mediated glucose metabolism while also stimulating glucose effectiveness.

The development of type 2 diabetes appears to involve the failure of both systems, the researchers say. Impairment of the brain-centered system is common, and it places an increased burden on the islet-centered system. For a time, the islet-centered system can compensate, but if it begins to fail, the brain-centered system may decompensate further, causing a vicious cycle that ends in diabetes.

Boosting insulin levels alone will lower glucose levels, but only addresses half the problem. To restore normal glucose regulation requires addressing the failures of the brain-centered system as well. Approaches that target both systems may not only achieve better blood glucose control, but could actually cause diabetes to go into remission, they write.

Reference: Michael W. Schwartz, Randy J. Seeley, Matthias H. Tscho, Stephen C. Woods, Gregory J. Morton, Martin G. Myers, & David D'Alessio. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature. 2013;503(7474). doi:10.1038/nature12709

This work was partly funded by National Institutes of Health (NIH) grants DK083042, DK093848 and DK089053, and the Nutrition Obesity Research Center and Diabetes Research Center at the University of Washington, and the Helmholtz Alliance ICEMED (Imaging and Curing Environmental Metabolic Diseases), through the Initiative and Networking Fund of the Helmholtz Association.

Michael McCarthy | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>