Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain plaques in healthy individuals linked to increased Alzheimer's risk

15.12.2009
Scientists have long assumed that amyloid brain plaques found in autopsies of Alzheimer's patients are harmful and cause Alzheimer's disease. But autopsies of people with no signs of mental impairment have also revealed brain plaques, challenging this theory.

Now, for the first time, researchers at Washington University in St. Louis have shown that brain plaques in apparently healthy individuals are associated with increased risk of diagnosis with Alzheimer's disease years later.

In two studies published this month in Archives of Neurology, scientists report that volunteers with brain plaques were more likely to have declining scores on annual cognitive tests, to show signs of shrinkage in a key brain area affected by Alzheimer's and to eventually be diagnosed with the disease.

"We don't have enough data yet to definitively say that people who scan positive for these brain plaques have presymptomatic Alzheimer's disease, but something is clearly going on that does not bode well for the health of their aging brains," says John C. Morris, the Harvey A. and Dorismae Hacker Friedman Distinguished Professor of Neurology and director of Washington University's Alzheimer's Disease Research Center (ADRC) and the Friedman Center for Aging.

Morris and others at the ADRC have previously found evidence that Alzheimer's disease harms the brain for years prior to typical diagnosis. They are pushing for earlier diagnosis as an essential step to successful treatment of Alzheimer's disease, but to do that they first have to seek earlier indicators of disease and then wait years to see if people with the indicators later develop symptomatic Alzheimer's.

According to Morris, the new papers are early and encouraging indicators that scientists are on track to pushing back the time at which diagnosis can be made.

"We only have a very small number of subjects to date, but what we're learning so far has been consistent with our predictions," he says.

The new studies were made possible by the development of an imaging agent, Pittsburgh Compound B (PiB), that lets scientists use positron emission tomography scans to detect amyloid plaques in living brains for the first time. Prior to PiB, clinicians could only verify the presence of brain plaques during autopsies. PiB scanning of ADRC research participants is directed by Mark Mintun, M.D., vice chair for research in radiology and professor of radiology at the University's Mallinckrodt Institute of Radiology.

Martha Storandt, Ph.D., professor of psychology and of neurology, led one of the studies, which compared a variety of factors in plaque-positive and plaque-negative subjects.

"One of the main things we wanted to know was whether people who scanned positive for brain plaques scored abnormally low on cognitive tests," she says. "They didn't, but when we looked at their annual testing records over a period of years, we saw that the scores of the plaque-positive group were declining, while those of the plaque-negative group were not."

Magnetic resonance imaging scans analyzed by Denise Head, Ph.D., assistant professor of psychology, revealed that brain areas hit hard by Alzheimer's disease, such as the parahippocampal gyrus, were smaller in subjects with plaques.

In a second study, led by Morris, researchers tracked a group of 159 volunteers, ages 51 to 88, who were scanned using PiB between 2004 and 2008. At the time of the scans, none of the participants showed signs of mental impairment. Twenty-three of the volunteers later developed mild impairment, and nine members of that group were diagnosed with Alzheimer's disease.

Those who stayed mentally healthy did not scan positive for plaques, but volunteers later diagnosed with problems did. Comparisons of the volumes of key brain structures revealed the same disparities seen in the other study: subjects who developed mental impairment had significant reductions in their parahippocampal gyrus and other structures affected by Alzheimer's.

According to Morris, a parallel effort at Washington University that analyzes cerebrospinal fluid to diagnose Alzheimer's earlier is also meeting with early success. That program is led by David Holtzman, M.D., the Andrew and Gretchen Jones Professor and chair of the Department of Neurology and Anne Fagan, Ph.D., research associate professor of neurology.

Morris speculates that earlier diagnosis and testing of new treatments may be possible within the next 10 years.

"There are risks inherent in Alzheimer's treatments, so we have to be careful that healthy people who are selected to receive these treatments to prevent dementia caused by Alzheimer's disease really do have presymptomatic disease," he says.

Morris JC, Roe CM, Grant EA, Head D, Storandt M, Goate AM, Fagan AM, Holtzman DM, Mintun MA. Pittsburgh Compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer's disease. Archives of Neurology, Dec. 14, 2009.

Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss are signatures of cerebral amyloid beta deposition identified with PiB. Archives of Neurology, Dec. 14, 2009.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>