Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain plaques in healthy individuals linked to increased Alzheimer's risk

15.12.2009
Scientists have long assumed that amyloid brain plaques found in autopsies of Alzheimer's patients are harmful and cause Alzheimer's disease. But autopsies of people with no signs of mental impairment have also revealed brain plaques, challenging this theory.

Now, for the first time, researchers at Washington University in St. Louis have shown that brain plaques in apparently healthy individuals are associated with increased risk of diagnosis with Alzheimer's disease years later.

In two studies published this month in Archives of Neurology, scientists report that volunteers with brain plaques were more likely to have declining scores on annual cognitive tests, to show signs of shrinkage in a key brain area affected by Alzheimer's and to eventually be diagnosed with the disease.

"We don't have enough data yet to definitively say that people who scan positive for these brain plaques have presymptomatic Alzheimer's disease, but something is clearly going on that does not bode well for the health of their aging brains," says John C. Morris, the Harvey A. and Dorismae Hacker Friedman Distinguished Professor of Neurology and director of Washington University's Alzheimer's Disease Research Center (ADRC) and the Friedman Center for Aging.

Morris and others at the ADRC have previously found evidence that Alzheimer's disease harms the brain for years prior to typical diagnosis. They are pushing for earlier diagnosis as an essential step to successful treatment of Alzheimer's disease, but to do that they first have to seek earlier indicators of disease and then wait years to see if people with the indicators later develop symptomatic Alzheimer's.

According to Morris, the new papers are early and encouraging indicators that scientists are on track to pushing back the time at which diagnosis can be made.

"We only have a very small number of subjects to date, but what we're learning so far has been consistent with our predictions," he says.

The new studies were made possible by the development of an imaging agent, Pittsburgh Compound B (PiB), that lets scientists use positron emission tomography scans to detect amyloid plaques in living brains for the first time. Prior to PiB, clinicians could only verify the presence of brain plaques during autopsies. PiB scanning of ADRC research participants is directed by Mark Mintun, M.D., vice chair for research in radiology and professor of radiology at the University's Mallinckrodt Institute of Radiology.

Martha Storandt, Ph.D., professor of psychology and of neurology, led one of the studies, which compared a variety of factors in plaque-positive and plaque-negative subjects.

"One of the main things we wanted to know was whether people who scanned positive for brain plaques scored abnormally low on cognitive tests," she says. "They didn't, but when we looked at their annual testing records over a period of years, we saw that the scores of the plaque-positive group were declining, while those of the plaque-negative group were not."

Magnetic resonance imaging scans analyzed by Denise Head, Ph.D., assistant professor of psychology, revealed that brain areas hit hard by Alzheimer's disease, such as the parahippocampal gyrus, were smaller in subjects with plaques.

In a second study, led by Morris, researchers tracked a group of 159 volunteers, ages 51 to 88, who were scanned using PiB between 2004 and 2008. At the time of the scans, none of the participants showed signs of mental impairment. Twenty-three of the volunteers later developed mild impairment, and nine members of that group were diagnosed with Alzheimer's disease.

Those who stayed mentally healthy did not scan positive for plaques, but volunteers later diagnosed with problems did. Comparisons of the volumes of key brain structures revealed the same disparities seen in the other study: subjects who developed mental impairment had significant reductions in their parahippocampal gyrus and other structures affected by Alzheimer's.

According to Morris, a parallel effort at Washington University that analyzes cerebrospinal fluid to diagnose Alzheimer's earlier is also meeting with early success. That program is led by David Holtzman, M.D., the Andrew and Gretchen Jones Professor and chair of the Department of Neurology and Anne Fagan, Ph.D., research associate professor of neurology.

Morris speculates that earlier diagnosis and testing of new treatments may be possible within the next 10 years.

"There are risks inherent in Alzheimer's treatments, so we have to be careful that healthy people who are selected to receive these treatments to prevent dementia caused by Alzheimer's disease really do have presymptomatic disease," he says.

Morris JC, Roe CM, Grant EA, Head D, Storandt M, Goate AM, Fagan AM, Holtzman DM, Mintun MA. Pittsburgh Compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer's disease. Archives of Neurology, Dec. 14, 2009.

Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss are signatures of cerebral amyloid beta deposition identified with PiB. Archives of Neurology, Dec. 14, 2009.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>