Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain-machine interfaces offer improved options for prosthetics and treatments after injury

16.11.2010
Artificial retinas, thought-controlled devices and brain stimulation therapy show promise

Two experimental brain-machine technologies — deep brain stimulation coupled with physical therapy and a thought-controlled computer system—may offer new therapies for people with stroke and brain injuries, new human research shows.

In addition, an animal study shows a new artificial retina may restore vision better than existing prosthetics. The findings were announced today at Neuroscience 2010, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news on brain science and health.

Brain-machine interface is an emerging field of neuroscience that aims to translate basic neuroscience research on how the brain packages and processes information to develop devices that help people regain functions lost to disease or injury.

Today's new findings show that:

Researchers have developed a faster, more accurate way to control cursors with thoughts alone. This scientific advance gives "real-time" feedback of brain activity and may provide more therapeutic options to people with brain injuries or syndromes that limit communication abilities (Anna Rose Childress, PhD, abstract 887.27, see attached summary).

Brain stimulation and physical therapy restores the use of paralyzed limbs — at least temporarily — in people recovering from a stroke. Few people recover completely after a stroke, and the new method may help in developing therapies to increase range of motion in affected limbs (Satoko Koganemaru, MD, PhD, abstract 898.5, see attached summary).

Scientists have constructed an artificial retina that incorporates the signals the eye normally sends to the brain. The new prosthetic may be capable of reproducing normal vision more effectively than existing technologies (Sheila Nirenberg, PhD, abstract 20.1, see attached summary).

"Harnessing the brain's ability to process, decode, and utilize information has untold therapeutic possibilities," said press conference moderator Miguel A. Nicolelis, MD, PhD, of Duke University and an expert in neurotechnology and brain-computer interfaces. "Today's research advances clearly demonstrate neuroscience's ability to expand our understanding of how the brain works, and translate that knowledge into better treatments, therapies, and technologies."

This research was supported by national funding agencies, such as the National Institutes of Health, as well as private and philanthropic organizations.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org
http://www.sfn.org/am2010/press/OmniPress/data/press/007.pdf

Further reports about: Brain-machine Neuroscience brain injuries physical therapy

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>