Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain-machine interfaces offer improved options for prosthetics and treatments after injury

Artificial retinas, thought-controlled devices and brain stimulation therapy show promise

Two experimental brain-machine technologies — deep brain stimulation coupled with physical therapy and a thought-controlled computer system—may offer new therapies for people with stroke and brain injuries, new human research shows.

In addition, an animal study shows a new artificial retina may restore vision better than existing prosthetics. The findings were announced today at Neuroscience 2010, the annual meeting of the Society for Neuroscience and the world's largest source of emerging news on brain science and health.

Brain-machine interface is an emerging field of neuroscience that aims to translate basic neuroscience research on how the brain packages and processes information to develop devices that help people regain functions lost to disease or injury.

Today's new findings show that:

Researchers have developed a faster, more accurate way to control cursors with thoughts alone. This scientific advance gives "real-time" feedback of brain activity and may provide more therapeutic options to people with brain injuries or syndromes that limit communication abilities (Anna Rose Childress, PhD, abstract 887.27, see attached summary).

Brain stimulation and physical therapy restores the use of paralyzed limbs — at least temporarily — in people recovering from a stroke. Few people recover completely after a stroke, and the new method may help in developing therapies to increase range of motion in affected limbs (Satoko Koganemaru, MD, PhD, abstract 898.5, see attached summary).

Scientists have constructed an artificial retina that incorporates the signals the eye normally sends to the brain. The new prosthetic may be capable of reproducing normal vision more effectively than existing technologies (Sheila Nirenberg, PhD, abstract 20.1, see attached summary).

"Harnessing the brain's ability to process, decode, and utilize information has untold therapeutic possibilities," said press conference moderator Miguel A. Nicolelis, MD, PhD, of Duke University and an expert in neurotechnology and brain-computer interfaces. "Today's research advances clearly demonstrate neuroscience's ability to expand our understanding of how the brain works, and translate that knowledge into better treatments, therapies, and technologies."

This research was supported by national funding agencies, such as the National Institutes of Health, as well as private and philanthropic organizations.

Kat Snodgrass | EurekAlert!
Further information:

Further reports about: Brain-machine Neuroscience brain injuries physical therapy

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>