Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Implant Surgeries at UCSF Dramatically Improve Symptoms of Debilitating Condition

09.03.2011
Implanting electrodes into a pea-sized part of the brain can dramatically improve life for people with severe cervical dystonia – a rare but extremely debilitating condition that causes painful, twisting neck muscle spasms – according to the results of a pilot study led by Jill Ostrem, MD and Philip Starr, MD PhD at the University of California, San Francisco.

Today, people with cervical dystonia can be treated with medications or injections of botulinum toxin (e.g., Botox®), which interrupt signals from the brain that cause these spasms. However, those treatments do not provide adequate relief for all patients.

Over the last decade, doctors at UCSF and elsewhere have turned to a technique called deep brain stimulation to help people with debilitating dystonia. Also used to treat Parkinson’s disease and the neurological disorder essential tremor, the technique is like putting a pacemaker inside a heart patient’s chest – except that deep brain stimulation requires a neurosurgeon to implant electrodes inside the brain.

Scientists are not sure exactly why deep brain stimulation works. The electrodes deliver electric current to tiny parts of the brain, likely altering abnormal brain circuitry and alleviating symptoms by overriding the signals coming from those parts of the brain.

Traditionally doctors have treated cervical dystonia with deep brain stimulation by targeting a brain nucleus known as the “globus pallidus internus.” Reporting this week in the journal Neurology, the UCSF team described the results of the first detailed clinical study looking at deep brain stimulation targeting a completely different part of the brain: the "subthalamic nucleus."

“This target is very widely used for Parkinson’s disease but not widely used for dystonia,” said Starr, a professor of neurological surgery at UCSF and senior author of the paper.

The study, led by Ostrem, an associate professor of neurology at UCSF, involved nine patients followed for one year after surgery. “Patients in this study had failed medical treatments, but with the surgery, they were able to improve their movements and quality of life – as well as overcome some of their disability and pain,” said Ostrem.

Video analysis and standard measures of dystonia showed the surgeries lowered pain, reduced spasms and improved the overall quality of life without causing serious side effects.

The team is now planning to enroll more patients into a longer study following outcomes for three years post-surgery.

“Medications and botulinum toxin injections still remain the first line of treatment,” Ostrem said, “but for those who are really still suffering, we think DBS using this new stimulation location offers another choice for them.”

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
29.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>