Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Implant Surgeries at UCSF Dramatically Improve Symptoms of Debilitating Condition

09.03.2011
Implanting electrodes into a pea-sized part of the brain can dramatically improve life for people with severe cervical dystonia – a rare but extremely debilitating condition that causes painful, twisting neck muscle spasms – according to the results of a pilot study led by Jill Ostrem, MD and Philip Starr, MD PhD at the University of California, San Francisco.

Today, people with cervical dystonia can be treated with medications or injections of botulinum toxin (e.g., Botox®), which interrupt signals from the brain that cause these spasms. However, those treatments do not provide adequate relief for all patients.

Over the last decade, doctors at UCSF and elsewhere have turned to a technique called deep brain stimulation to help people with debilitating dystonia. Also used to treat Parkinson’s disease and the neurological disorder essential tremor, the technique is like putting a pacemaker inside a heart patient’s chest – except that deep brain stimulation requires a neurosurgeon to implant electrodes inside the brain.

Scientists are not sure exactly why deep brain stimulation works. The electrodes deliver electric current to tiny parts of the brain, likely altering abnormal brain circuitry and alleviating symptoms by overriding the signals coming from those parts of the brain.

Traditionally doctors have treated cervical dystonia with deep brain stimulation by targeting a brain nucleus known as the “globus pallidus internus.” Reporting this week in the journal Neurology, the UCSF team described the results of the first detailed clinical study looking at deep brain stimulation targeting a completely different part of the brain: the "subthalamic nucleus."

“This target is very widely used for Parkinson’s disease but not widely used for dystonia,” said Starr, a professor of neurological surgery at UCSF and senior author of the paper.

The study, led by Ostrem, an associate professor of neurology at UCSF, involved nine patients followed for one year after surgery. “Patients in this study had failed medical treatments, but with the surgery, they were able to improve their movements and quality of life – as well as overcome some of their disability and pain,” said Ostrem.

Video analysis and standard measures of dystonia showed the surgeries lowered pain, reduced spasms and improved the overall quality of life without causing serious side effects.

The team is now planning to enroll more patients into a longer study following outcomes for three years post-surgery.

“Medications and botulinum toxin injections still remain the first line of treatment,” Ostrem said, “but for those who are really still suffering, we think DBS using this new stimulation location offers another choice for them.”

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>