Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain cell transplants in early 2013

28.11.2012
As part of the European study TRANSEURO, five patients with Parkinson’s disease will undergo brain cell transplants at Skåne University Hospital in Lund, Sweden, in early 2013. These are the first operations of their kind in Europe for over 10 years.

The TRANSEURO study, which in Sweden is led by Lund University, is now taking a critical approach to the viability of cell therapy as a future treatment for Parkinson’s disease. Can we replace cells that die as a result of our most common neurological diseases? What are the therapies of the future for neurodegenerative diseases like Parkinson’s and Alzheimer’s?

Under the leadership of Professor of Neurology Olle Lindvall, brain researchers in Lund had already developed a method of transplanting nerve cells in the 1980s. In 1987, brain surgeon Stig Rehncrona operated on the very first patient. That study was historic and marked the first repair of the human nervous system. The news was cabled out to all the world’s media and the Swedish researchers soon graced the front page of the New York Times.

“Since the advances made in the 1980s and 1990s, the research field has encountered many obstacles. In the early 2000s, two American studies produced negative results, which meant that cell transplants for Parkinson’s disease came to a dead end”, says

Professor Anders Björklund, who in the 1980s was responsible for the ground-breaking discoveries in the laboratory.

Despite the unsatisfactory results presented in the American trials, cell therapy has still been seen to have effects that are entirely unique in the history of research on Parkinson’s. A third of the transplant patients have seen significant benefits of cell therapy over a very long period without medication, in some cases up to 20 years.

“For a disease with a very demanding medication regime, and for which the effects of the standard medication begin to diminish after 5–10 years, cell therapy represents a hope of a different life for many Parkinson’s sufferers”, says Professor Håkan Widner, who is in charge of patient recruitment in Lund.

“The results of TRANSEURO will play an important role in the immediate future of cell therapy as a viable treatment. We have scrutinized the failed American studies in an attempt to optimise the technique, improve patient selection and conduct more personalised follow-up. We are hopeful that the results will be different this time”, says Professor Widner.

Contact:
Håkan Widner, Adjunct Professor of Neurology at Lund University and consultant at Skåne University Hospital, tel: +46 46 171425

Anders Björklund, Professor of Neuroscience at Lund University, mobile: +46 703 146761

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>