Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain still awake, even during deep sleep

09.10.2008
Sleep in man is divided in two main phases : non-REM sleep, which occupies most of our early sleep night, and REM sleep, during which our dreams prevail.

Non-REM sleep is usually considered as a compensatory ‘resting’ state for the brain, following the intense waking brain activity. Indeed, previous brain imaging studies showed that the brain was less active during periods of non-REM sleep as compared to periods of wakefulness.

Although not rejecting this concept, researchers from the Cyclotron Research Centre of the University of Liège in Belgium and from the Department of Neurology of Liege University Hospital demonstrate that, even during its deepest stages (also called ‘slow-wave-sleep’), non-REM sleep should not be viewed as a stage of constant and continuous brain activity decrease, but is also characterized by transient and recurrent activity increases in specific brain areas.

In a study published recently in the prestigious american journal « Proceedings of the National Academy of Sciences » (PNAS), the research team led by Dr Thanh Dang-Vu and Pr Pierre Maquet shows that brain activity during these sleep stages is actually profoundly influenced by spontaneous slow rhythms (also called ‘slow oscillations’) which organize neuronal functioning during non-REM sleep.

By using functional magnetic resonance imaging (fMRI) combined with electroencephalography (EEG), researchers have evidenced that these slow oscillations are associated with brain activity increases during non-REM sleep (see image, side panels), therefore discarding the concept of brain ‘quiescence’ that prevailed for a long time in the characterization of non-REM sleep. Besides, these activity increases are located in specific brain areas, including the inferior frontal gyrus, the parahippocampal gyrus, the precuneus and the posterior cingulate cortex, as well as the brainstem and cerebellum (see image, central panels).

These results improve our understanding of non-REM sleep mechanisms. On the one hand, they demonstrate that non-REM sleep is a stage of brain activation organized by the slow oscillations. On the other hand, they allow the identification of brain areas potentially involved in the generation of these oscillations, which are a hallmark of brain functioning during non-REM sleep. Moreover, by showing the activation of areas involved in the processing of memory traces such as para-hippocampal areas, the study might point to the potential functions of sleep, in particular the increasingly well-defined role of sleep in memory consolidation. Finally, the activation of areas such as the brainstem, usually associated with arousal and waking, might reveal these oscillations of non-REM sleep as ‘micro-wake’ periods allowing the brain to fulfil crucial and active functions, even during the deepest stages of sleep.

This research was supported by the National Fund for Scientific Research (Belgium), the University of Liège and the Queen Elisabeth Medical Foundation.

Didier Moreau | alfa
Further information:
http://www.ulg.ac.be
http://www.pnas.org/content/105/39/15160

Further reports about: REM sleep brain areas non-REM sleep para-hippocampal areas

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>