Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain still awake, even during deep sleep

09.10.2008
Sleep in man is divided in two main phases : non-REM sleep, which occupies most of our early sleep night, and REM sleep, during which our dreams prevail.

Non-REM sleep is usually considered as a compensatory ‘resting’ state for the brain, following the intense waking brain activity. Indeed, previous brain imaging studies showed that the brain was less active during periods of non-REM sleep as compared to periods of wakefulness.

Although not rejecting this concept, researchers from the Cyclotron Research Centre of the University of Liège in Belgium and from the Department of Neurology of Liege University Hospital demonstrate that, even during its deepest stages (also called ‘slow-wave-sleep’), non-REM sleep should not be viewed as a stage of constant and continuous brain activity decrease, but is also characterized by transient and recurrent activity increases in specific brain areas.

In a study published recently in the prestigious american journal « Proceedings of the National Academy of Sciences » (PNAS), the research team led by Dr Thanh Dang-Vu and Pr Pierre Maquet shows that brain activity during these sleep stages is actually profoundly influenced by spontaneous slow rhythms (also called ‘slow oscillations’) which organize neuronal functioning during non-REM sleep.

By using functional magnetic resonance imaging (fMRI) combined with electroencephalography (EEG), researchers have evidenced that these slow oscillations are associated with brain activity increases during non-REM sleep (see image, side panels), therefore discarding the concept of brain ‘quiescence’ that prevailed for a long time in the characterization of non-REM sleep. Besides, these activity increases are located in specific brain areas, including the inferior frontal gyrus, the parahippocampal gyrus, the precuneus and the posterior cingulate cortex, as well as the brainstem and cerebellum (see image, central panels).

These results improve our understanding of non-REM sleep mechanisms. On the one hand, they demonstrate that non-REM sleep is a stage of brain activation organized by the slow oscillations. On the other hand, they allow the identification of brain areas potentially involved in the generation of these oscillations, which are a hallmark of brain functioning during non-REM sleep. Moreover, by showing the activation of areas involved in the processing of memory traces such as para-hippocampal areas, the study might point to the potential functions of sleep, in particular the increasingly well-defined role of sleep in memory consolidation. Finally, the activation of areas such as the brainstem, usually associated with arousal and waking, might reveal these oscillations of non-REM sleep as ‘micro-wake’ periods allowing the brain to fulfil crucial and active functions, even during the deepest stages of sleep.

This research was supported by the National Fund for Scientific Research (Belgium), the University of Liège and the Queen Elisabeth Medical Foundation.

Didier Moreau | alfa
Further information:
http://www.ulg.ac.be
http://www.pnas.org/content/105/39/15160

Further reports about: REM sleep brain areas non-REM sleep para-hippocampal areas

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>