Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The brain still awake, even during deep sleep

Sleep in man is divided in two main phases : non-REM sleep, which occupies most of our early sleep night, and REM sleep, during which our dreams prevail.

Non-REM sleep is usually considered as a compensatory ‘resting’ state for the brain, following the intense waking brain activity. Indeed, previous brain imaging studies showed that the brain was less active during periods of non-REM sleep as compared to periods of wakefulness.

Although not rejecting this concept, researchers from the Cyclotron Research Centre of the University of Liège in Belgium and from the Department of Neurology of Liege University Hospital demonstrate that, even during its deepest stages (also called ‘slow-wave-sleep’), non-REM sleep should not be viewed as a stage of constant and continuous brain activity decrease, but is also characterized by transient and recurrent activity increases in specific brain areas.

In a study published recently in the prestigious american journal « Proceedings of the National Academy of Sciences » (PNAS), the research team led by Dr Thanh Dang-Vu and Pr Pierre Maquet shows that brain activity during these sleep stages is actually profoundly influenced by spontaneous slow rhythms (also called ‘slow oscillations’) which organize neuronal functioning during non-REM sleep.

By using functional magnetic resonance imaging (fMRI) combined with electroencephalography (EEG), researchers have evidenced that these slow oscillations are associated with brain activity increases during non-REM sleep (see image, side panels), therefore discarding the concept of brain ‘quiescence’ that prevailed for a long time in the characterization of non-REM sleep. Besides, these activity increases are located in specific brain areas, including the inferior frontal gyrus, the parahippocampal gyrus, the precuneus and the posterior cingulate cortex, as well as the brainstem and cerebellum (see image, central panels).

These results improve our understanding of non-REM sleep mechanisms. On the one hand, they demonstrate that non-REM sleep is a stage of brain activation organized by the slow oscillations. On the other hand, they allow the identification of brain areas potentially involved in the generation of these oscillations, which are a hallmark of brain functioning during non-REM sleep. Moreover, by showing the activation of areas involved in the processing of memory traces such as para-hippocampal areas, the study might point to the potential functions of sleep, in particular the increasingly well-defined role of sleep in memory consolidation. Finally, the activation of areas such as the brainstem, usually associated with arousal and waking, might reveal these oscillations of non-REM sleep as ‘micro-wake’ periods allowing the brain to fulfil crucial and active functions, even during the deepest stages of sleep.

This research was supported by the National Fund for Scientific Research (Belgium), the University of Liège and the Queen Elisabeth Medical Foundation.

Didier Moreau | alfa
Further information:

Further reports about: REM sleep brain areas non-REM sleep para-hippocampal areas

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>