Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the brain 'remember' antidepressants?

27.03.2012
Individuals with major depressive disorder (MDD) often undergo multiple courses of antidepressant treatment during their lives. This is because the disorder can recur despite treatment and because finding the right medication for a specific individual can take time.

While the relationship between prior treatment and the brain's response to subsequent treatment is unknown, a new study by UCLA researchers suggests that how the brain responds to antidepressant medication may be influenced by its remembering of past antidepressant exposure.

Interestingly, the researchers used a harmless placebo as the key to tracking the footprints of prior antidepressant use.

Aimee Hunter, the study's lead author and an assistant professor of psychiatry at UCLA's Semel Institute for Neuroscience and Human Behavior, and colleagues showed that a simple placebo pill, made to look like actual medication for depression, can "trick" the brain into responding in the same manner as the actual medication.

The report was published online March 23 in the journal European Neuropsychopharmacology.

The investigators examined changes in brain function in 89 depressed persons during eight weeks of treatment, using either an antidepressant medication or a similar-looking placebo pill. They set out to compare the two treatments — medication versus placebo — but they also added a twist: They separately examined the data for subjects who had never previously taken an antidepressant and those who had.

The researchers focused on the prefrontal cortex, an area of the brain thought to be involved in planning complex cognitive behavior, personality expression, decision-making and moderating social behavior, all things depressed people wrestle with.

Brain changes were assessed using electroencephalograph (EEG) measures developed at UCLA by study co-authors Dr. Ian Cook, UCLA's Miller Family Professor of Psychiatry, and Dr. Andrew Leuchter, a professor of psychiatry and director of the Laboratory of Brain, Behavior and Pharmacology at UCLA's Semel Institute. The EEG measure, recorded from scalp electrodes, is linked to blood flow in the cerebral cortex, which suggests the level of brain activity.

The antidepressant medication given during the study appeared to produce slight decreases in prefrontal brain activity, regardless of whether subjects had received prior antidepressant treatment during their lifetime or not. (A decrease in brain activity is not necessarily a bad thing, the researchers note; with depression, too much activity in the brain can be as bad as too little.)

However, the researchers observed striking differences in the power of placebo, depending on subjects' prior antidepressant use. Subjects who had never been treated with an antidepressant exhibited large increases in prefrontal brain activity during placebo treatment. But those who had used antidepressant medication in the past showed slight decreases in prefrontal activity — brain changes that were indistinguishable from those produced by the actual drug.

"The brain's response to the placebo pill seems to depend on what happened previously — on whether or not the brain has ever 'seen' antidepressant medication before," said Hunter, who is a member of the placebo research team at the Laboratory of Brain, Behavior and Pharmacology. "If it has seen it before, then the brain's signature 'antidepressant-exposure' response shows up."

According to Hunter, the effect looks conspicuously like a classical conditioning phenomenon, wherein prior exposure to the actual drug may have produced the specific prefrontal brain response and subsequent exposure to the cues surrounding drug administration — the relationship with the doctor or nurse, the medical treatment setting, the act of taking a prescribed pill and so forth — came to elicit a similar brain response through 'conditioning' or 'associative learning.'

While medication can have a powerful effect on our physiology, said Hunter, "the behaviors and cues in the environment that are associated with taking medication can come to elicit their own effects. One's personal treatment history is one of the many factors that influence the overall effects of treatment."

Still, she noted, there are other possible explanations, and further research is needed to tease out changes in brain function that are related to antidepressant exposure, compared with brain changes that are related to clinical improvement during treatment.

Funding for the study was provided by the National Institute of Mental Health, Eli Lilly and Company, Wyeth-Ayerst Laboratories, and Aspect Medical Systems; these funders had no further role in the study. Hunter received financial support from Covidien. For disclosures for Dr. Cook and Dr. Leuchter, please see the full paper.

The UCLA Department of Psychiatry and Biobehavioral Sciences is the home within the David Geffen School of Medicine at UCLA for faculty who are experts in the origins and treatment of disorders of complex human behavior. The department is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, a world-leading interdisciplinary research and education institute devoted to the understanding of complex human behavior and the causes and consequences of neuropsychiatric disorders.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>