Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BPA shown to disrupt thyroid function in pregnant animals and offspring

14.11.2012
New study uses animal model similar to humans and shows BPA can affect thyroid function

In utero exposure to bisphenol A (BPA) can be associated with decreased thyroid function in newborn sheep, according to a recent study accepted for publication in Endocrinology, a journal of The Endocrine Society. Hypothyroidism is characterized by poor mental and physical performance in human adults and in children can result in cognitive impairment and failure to grow normally.

BPA, a major molecule used in the plastic industry, has been shown to be an endocrine disruptor that could exert deleterious effects on human health. Most investigations have focused on reproductive functions, but there is evidence that BPA might have negative effects on other endocrine systems including thyroid function. The current study used sheep, a relevant model for human pregnancy and thyroid regulation and ontogeny, and analyzed the internal exposures of the fetuses and their mothers to BPA and determined to what extent those exposures may be associated with thyroid disruption.

"Our study is the first to show that BPA can alter thyroid function of pregnant animals and their offspring in a long-gestation species with similar regulation of thyroid function as humans," said Catherine Viguié, PhD, of Toxalim, Research Centre in Food Toxicology in Toulouse, France and lead author of the study. "Because of the potential consequences of maternal/fetal thyroid disruption on neural and cognitive development, we think that our study warrants the need for further investigations on the effect of BPA on thyroid function."

This study was conducted on adult ewes that had multiple pregnancies before being included in the experiment. Some of the pregnant ewes received daily subcutaneous injections of BPA while the remainder were allocated to the control group. Blood samples were taken from jugular blood, amniotic fluid, placenta samples and cord blood to determine levels of BPA, thyroid-stimulating hormone (TSH) and thyroxine. Results showed that maternal and fetal exposure to BPA was associated with disruption of thyroid function of both the pregnant ewes throughout pregnancy and the newborns as characterized by a decrease in circulating thyroxine levels.

"BPA concentrations in the mother blood in this experiment were fluctuating between injections from 15 to 1 time the highest blood levels reported in pregnant women in the literature," notes Viguié. "As a consequence, although this study clearly indicates that BPA has the potential to alter thyroid function in living pregnant animals and their offspring, it cannot be considered as fully conclusive in terms of risk for human health in the actual conditions of exposure of human populations."

"In other words, although our study clearly indicates that BPA-induced thyroid disruption is possible, it does not indicate how probable such a disruption is to occur in real conditions," added Viguié. "Thus, the main merit of our work is to encourage others, including epidemiologists, to scrutinize and qualify carefully such a probability."

Other researchers working on the study include: Séverine Collet, Véronique Gayrard, Nicole Picard-Hagen, Sylvie Puel, Béatrice Roques, Pierre-Louis Toutain and Marlène Lacroix of Institut National de la Recherche Agronomique (INRA), Toxalim, and the Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse in France.

The article, "Maternal and fetal exposure to bisphenol A is associated to alterations of thyroid function in pregnant ewes and their newborn lambs," appears in the January 2013 issue of Endocrinology.

Founded in 1916, The Endocrine Society is the world's oldest, largest and most active organization devoted to research on hormones and the clinical practice of endocrinology. Today, The Endocrine Society's membership consists of over 15,000 scientists, physicians, educators, nurses and students in more than 100 countries. Society members represent all basic, applied and clinical interests in endocrinology. The Endocrine Society is based in Chevy Chase, Maryland. To learn more about the Society and the field of endocrinology, visit our site at www.endo-society.org. Follow us on Twitter at https://twitter.com/#!/EndoMedia.

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>