Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botanical compound could prove crucial to healing influenza

19.07.2012
Virginia Tech researchers have discovered that abscisic acid has anti-inflammatory effects in the lungs as well as in the gut

Building on previous work with the botanical abscisic acida, researchers in the Nutritional Immunology and Molecular Medicine Laboratory (NIMML) have discovered that abscisic acid has anti-inflammatory effects in the lungs as well as in the gut. The results will be published in the Journal of Nutritional Biochemistry.

"While the immune effects of abscisic acid are well understood in the gut, less was known about its effects in the respiratory tract. We've shown definitively that not only does abscisic acid ameliorate disease activity and lung inflammatory pathology, it also aids recovery and survival in influenza-infected mice," said Raquel Hontecillas, Ph.D., study leader, assistant professor of immunology at Virginia Bioinformatics Institute, and co-director of NIMML.

Influenza accounts for anywhere from 3,000 to 49,000 deaths per year in the United States alone, according to the Centers for Disease Control. It is difficult to treat if not caught immediately; antivirals usually become ineffective after the virus incubation period has passed and resistance to antiviral drugs poses a serious public health problem in the face of outbreaks. Abscisic acid, however, has been shown to be most effective at about seven to ten days into the infection, targeting the immune response rather than the virus itself, which many researchers feel is a safer way to reduce flu-associated fatalities.

"Most drugs for respiratory infections target the virus itself, rather than the inflammatory responses caused by the virus. Abscisic acid activates peroxisome proliferator-activated receptor-gamma, a receptor that aids in reducing inflammation, through a newly identified pathwaya but it does so without the side effects of other agonists like thiazolidinediones, which are known to have strong adverse side effects. The development of complementary and alternative Medicine approaches that modulate the host response has great promise in decreasing respiratory damage caused by influenza or other respiratory pathogens," said Josep Bassaganya-Riera, Ph.D., director of NIMML and professor of nutritional immunology at the Virginia Bioinformatics Institute.

From this and previous research, it's clear that abscisic acid could yield a novel new way to combat inflammatory disease, both in the gut and the respiratory tract. By using host-targeted strategies to mediate disease, alternate pathways can be established to activate immune responses without the deadly side effects of many drugs currently on the market.

This research was supported by award number R01AT004308 of the National Center for Complementary and Alternative Medicine (NCCAM) at the National Institutes of Health awarded to Josep Bassaganya-Riera, the Virginia Bioinformatics Institute-Fralin CRI grants program to Raquel Hontecillas, and funds from the Nutritional Immunology and Molecular Medicine Laboratory.

Tiffany Trent | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>