Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boosting cell production could help treat liver disease

05.03.2012
Scientists have shed light on how the liver repairs itself with research that could help develop drugs to treat liver disease.

Researchers at the Medical Research Council (MRC) Centre for Regenerative Medicine at the University of Edinburgh have discovered how to enhance the production of key cells needed to repair damaged liver tissue.

The study, published in the journal Nature Medicine, could help heal livers affected by diseases such as cirrhosis or chronic hepatitis.

Scientists were able to unpick the process of how different cells in the liver are formed.

When the liver is damaged it produces too many bile duct cells and not enough cells called hepatocytes, which the liver needs to repair damaged tissue.

They found they could increase the number of hepatocyte cells – which detoxify the liver – by encouraging these cells to be produced instead of bile duct cells.

Understanding how liver cells are formed could help to develop drugs to encourage the production of hepatocytes to repair liver tissue. This could eventually ease the pressure on waiting lists for liver transplants.

Professor Stuart Forbes, Associate Director at the MRC Centre for Regenerative Medicine at the University of Edinburgh, who is a consultant hepatologist and was the academic leader of the study, said: "Liver disease is on the increase in the UK and is one of the top five killers. Increasing numbers of patients are in need of liver transplants, but the supply of donated organs is not keeping pace with the demand. If we can find ways to encourage the liver to heal itself then we could ease the pressure on waiting lists for liver transplants."

Liver disease is the fifth biggest killer in the UK. There are almost 500 people waiting for a liver transplant, compared to just over 300 five years ago.

The production of hepatocyte cells was increased by altering the expression of certain genes in early stage liver cells.

Dr Luke Boulter, of the University of Edinburgh's MRC Centre for Regenerative Medicine and first author on the paper, said: "This research helps us know how to increase numbers of cells that are needed for healthy liver function and could pave the way for finding drugs that help liver repair. Understanding the process in which cells in the liver are formed is key in looking at ways to repair damaged liver tissue."

Dr Rob Buckle, Head of Regenerative Medicine at the MRC, said: "Liver transplants have saved countless lives over the years, but demand will inevitably outstrip supply and in the long term we need to look beyond replacing damaged tissues to exploiting the regenerative potential of the human body. The MRC continues to invest heavily across the breadth of approaches that might deliver the promise of regenerative medicine, and this study opens up the possibility of applying our increasing knowledge of stem cell biology to stimulate the body's own dormant repair processes as a basis for future therapy."

The study was carried out in collaboration with the University's MRC Centre for Inflammation Research, the Beatson Institute for Cancer Research in Glasgow and the K.U. Leuven in Belgium.

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

Further reports about: MRC Medicine Regenerative Therapien bile duct damaged tissue liver cells

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>