Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonn Neuroscientists Participating in International Initiative for Study of Rare Diseases

03.12.2012
Scientists from the German Center for Neurodegenerative Diseases (DZNE) are participating in an international research project on the causes of rare degenerative brain and muscle disorders.

Over the next five years, the DNZE Bonn site will receive 470,000 euros for the effort. The project, entitled "NEUROMICS: Integrated European Project on Omics Research of Rare Neuromuscular and Neurodegenerative Diseases," is being funded under the EU's Seventh Framework Programme for Research.

The partners in the effort hail from Europe, Australia, Canada and the United States.

"Such a concerted effort on this scale is unprecedented," explains Prof. Thomas Klockgether, Director of Clinical Research at the DZNE. Relevant work in Bonn will focus on patients and healthy people with increased risks of disease. "We expect the work to yield new findings on the causes of such diseases and to provide impetus for diagnosis and therapy," notes Klockgether.

NEUROMICS is focused on a range of brain and movement disorders that are classified as "rare." That classification notwithstanding, in Europe alone the group of those affected – with symptoms including paralysis, muscle tremors, memory loss and dementia – amounts to more than half a million people. To date, only a limited range of therapies is available for easing these rare "neurodegenerative" and "neuromuscular" disorders. And little research has been conducted into the causes of such disorders. "Fortunately, the various disorders overlap in many areas, and virtually the same methods are always used to study them," Klockgether explains. "It thus makes a great deal of sense to tackle these diseases in the context of a single project."

A disease is considered "rare" when it affects fewer than five out of every ten thousand people. It is estimated that there are 6,000 to 8,000 such diseases. NEUROMICS is focusing on a total of ten of them: diseases such as Chorea Huntington, which involves motor and mental disorders, and the group of muscular dystrophies, which lead to muscle atrophy. "Several factors led to this selection," Klockgether reveals. "On the one hand, the diseases needed to be representative, i.e. to have a certain prevalence. On the other hand, the studies involved are only possible on the basis of long experience and a certain type of infrastructure, which is only available for certain diseases." The potential for including existing groups of patients within the studies is of central importance. "A relevant group of people has to be available. It can't simply be built on an ad hoc basis," emphasizes Klockgether.
The emphasis in Bonn: movement disorders

In NEUROMICS, DZNE researchers will be contributing expertise especially in the area of "ataxia". Ataxia sufferers have reduced muscle control, and they are prone to balance loss, incoordination and speech disorders. Such impairments are triggered by brain and spinal damage that can result from many different types of diseases. Klockgether, who is also head of the University of Bonn's Center for Rare Diseases, and his team are currently treating several hundred such patients.

One aspect of NEUROMICS includes studying persons who, while showing no symptoms, have an increased risk of disease as a result of their genetic disposition. "Such an increased risk may be found in close relatives of patients," explains Klockgether. "We are thus hoping that relatives of our patients will agree to take part in the studies."

Diversity of methods

Neurological disorders develop over long periods of time. Therefore noticeable findings can be made years before a disease makes an obvious appearance, Klockgether explains. "We are thus planning to study healthy persons with an increased risk of disease as comprehensively as possible." To carry out those plans, the researchers in Bonn will use a variety of different procedures, including magnetic resonance imaging (MRI) – which provides detailed views of the brain's interior – and tests of motor and cognitive skills.

In addition, blood samples will be taken from the persons being studied in Bonn and then analyzed by project partners, in the framework of the international cooperation for the effort. Those studies will make use of state-of-the-art technologies for gene and protein analysis. Such technologies are collectively referred to as "omics technologies" – as is reflected in the project name, NEUROMICS.
The technologies are expected to help identify "biomarkers". Biomarkers are indicators - found in blood tests results, genomic analysis or MRI scans (for example) - that can identify a disease before the first symptoms appear. Needless to say, biomarkers play a highly significant role in early detection.

Klockgether and his colleagues also plan to study underlying causes: "A number of these rare diseases are known to be inheritable," he notes. "At the same time, we are not aware of all of the genes involved in such inheritance. The specific objectives of NEUROMICS include finding such genes and thereby improving our understanding of the molecular triggers behind these diseases. This work may produce new approaches for therapies."

For further information: http://www.rd-neuromics.eu
The German Center for Neurodegenerative Diseases (DZNE) studies the causes of diseases of the nervous system and develops strategies for relevant prevention, therapy and care. An institution within the Helmholtz Association of German Research Centres, it has sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Website: http://www.dzne.de/en

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en
http://www.rd-neuromics.eu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>