Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone stem cells shown to regenerate bones and cartilage in adult mice

16.01.2015

Cells could be exploited to treat osteoarthritis and osteoporosis

A stem cell capable of regenerating both bone and cartilage has been identified in bone marrow of mice. The discovery by researchers at Columbia University Medical Center (CUMC) is reported today in the online issue of the journal Cell.


The osteochondroretricular stem cell, a newly identified type of bone stem cell that appears to be vital to skeletal development and may provide the basis for novel treatments for osteoarthritis, osteoporosis, and bone fractures. In this illustration of the head of a femur (the thigh bone), osteochondroretricular stem cells are visualized in red.

Credit: Laboratory of Dr. Timothy Wang

The cells, called osteochondroreticular (OCR) stem cells, were discovered by tracking a protein expressed by the cells. Using this marker, the researchers found that OCR cells self-renew and generate key bone and cartilage cells, including osteoblasts and chondrocytes. Researchers also showed that OCR stem cells, when transplanted to a fracture site, contribute to bone repair.

"We are now trying to figure out whether we can persuade these cells to specifically regenerate after injury. If you make a fracture in the mouse, these cells will come alive again, generate both bone and cartilage in the mouse--and repair the fracture. The question is, could this happen in humans," says Siddhartha Mukherjee, MD, PhD, assistant professor of medicine at CUMC and a senior author of the study.

... more about:
»CANCER »CUMC »Cartilage »MSCs »stem cells

The researchers believe that OCR stem cells will be found in human bone tissue, as mice and humans have similar bone biology. Further study could provide greater understanding of how to prevent and treat osteoporosis, osteoarthritis, or bone fractures.

"Our findings raise the possibility that drugs or other therapies can be developed to stimulate the production of OCR stem cells and improve the body's ability to repair bone injury--a process that declines significantly in old age," says Timothy C. Wang, MD, the Dorothy L. and Daniel H. Silberberg Professor of Medicine at CUMC, who initiated this research. Previously, Dr. Wang found an analogous stem cell in the intestinal tract and observed that it was also abundant in the bone.

"These cells are particularly active during development, but they also increase in number in adulthood after bone injury," says Gerard Karsenty, MD, PhD, the Paul A. Marks Professor of Genetics and Development, chair of the Department of Genetics & Development, and a member of the research team.

The study also showed that the adult OCRs are distinct from mesenchymal stem cells (MSCs), which play a role in bone generation during development and adulthood. Researchers presumed that MSCs were the origin of all bone, cartilage, and fat, but recent studies have shown that these cells do not generate young bone and cartilage. The CUMC study suggests that OCR stem cells actually fill this function and that both OCR stems cells and MSCs contribute to bone maintenance and repair in adults.

The researchers also suspect that OCR cells may play a role in soft tissue cancers.

###

The paper is titled, "Gremlin 1 identifies a skeletal stem cell with bone, cartilage and reticular stromal potential." The other contributors are Daniel L. Worthley (CUMC, University of Adelaide, SA, Australia, South Australian Health and Medical Research Institute, SA, Australia, and Royal Children's Hospital, Vic., Australia), Michael Churchill (CUMC), Jocelyn T. Compton (CUMC), Yagnesh Tailor (CUMC), Meenakshi Rao (CUMC), Yiling Si (CUMC), Daniel Levin (Keck School of Medicine of the University of Southern California, CA), Matthew G. Schwartz (Harvard Medical School, Cambridge, MA), Aysu Uygur (Harvard), Yoku Hayakawa (CUMC), Stefanie Gross (CUMC), Bernhard W. Renz (CUMC), Wanda Setlik (CUMC), Ashley N. Martinez (CUMC), Xiaowei Chen (CUMC), Saqib Nizami (CUMC), Heon Goo Lee (CUMC), H. Paco Kang (CUMC, Jon-Michael Caldwell (CUMC), Samuel Asfaha (CUMC), C. Benedikt Westphalen (CUMC and University Hospital Munich, Ludwig-Maximilians-University Munich - Campus Groβhadern, Munich, Germany), Trevor Graham (Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK), Guangchun Jin (CUMC), Karan Nagar (CUMC), Hongshan Wang (CUMC), Mazen A. Kheirbek ( CUMC), Alka Kolhe (CUMC), Jared Carpenter (CUMC), Mark Glaire (CUMC), Abhinav Nair (CUMC), Simon Renders (CUMC), Nicholas Manieri (Washington University in St Louis, MO), Sureshkumar Muthupalani (Massachusetts Institute of Technology, Cambridge, MA), James G. Fox (MIT), Maximilian Reichert (University of Pennsylvania Perelman School of Medicine, Philadelphia, PA), Andrew S. Giraud (CUMC), Robert F. Schwabe (CUMC)), Jean-Phillipe Pradere (CUMC and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France), Katherine Walton (University of Michigan, Ann Arbor, MI), Ajay Prakash (Michigan), Deborah Gumucio (Michigan), Anil K. Rustgi (Pennsylvania), Thaddeus S. Stappenbeck (Washington), Richard A. Friedman (CUMC)), Michael D. Gershon (CUMC), Peter Sims (CUMC), Tracy Grikscheit (Keck School of Medicine of the University of Southern California, Los Angeles, CA), and Francis Y. Lee (CUMC).

The authors declare no financial or other conflicts of interest.

The study was funded by grants from the National Institutes of Health (5U54 CA126513, R01 RHL115145A, AR056246, and EB006834),), the Robert Carroll and Jane Chace Carroll Laboratories, the American Cancer Society, the NH&MRC and Menzies Foundation, Cancer Council SA's Beat Cancer Project on behalf of its donors and the State Government of South Australia through the Department of Health, Gastroenterological Society of Australia, the American Gastroenterological Association, the American Association for Cancer Research, the Royal Australasian College of Physicians, and the Columbia University Ines Mandl Postdoctoral research fellowship.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu  or columbiadoctors.org

Media Contact

Karin Eskenazi
ket2116@columbia.edu
212-342-0508

 @ColumbiaMed

http://www.cumc.columbia.edu 

Karin Eskenazi | EurekAlert!

Further reports about: CANCER CUMC Cartilage MSCs stem cells

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>