Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells can heal nerves in diabetes model

06.02.2009
Transplanting cells that replenish blood vessels can also restore nerve function in an animal model of diabetic neuropathy, Emory researchers have found.

The results are described online this week in the journal Circulation.

The majority of people with diabetes have some form of neuropathy--damage to the peripheral nerves that can cause a loss of sensation in hands, arms, feet or legs. The damage, caused by high blood sugar, occurs gradually and in advanced cases can lead to amputation. Scientists have connected the damage to problems with peripheral nerves' blood supply.

Cultured cells from the bone marrow can promote the regrowth of both blood vessels and the protective lining of nerves in the limbs of diabetic animals, a team led by Young-sup Yoon, MD, PhD, associate professor of medicine (cardiology) at Emory University School of Medicine, found.

Bone marrow is thought to contain endothelial progenitor cells (EPCs), which can divide into endothelial cells, forming a "patch" for damaged blood vessels.

Yoon's team cultured bone marrow cells in a way designed to enrich them for EPCs and injected them next to the sciatic nerves of diabetic mice. The sciatic nerve is a large nerve that runs from the back to the rear leg. The mice were made diabetic by giving them streptozocin, a drug that poisons insulin-producing cells in the pancreas.

The team found that over several weeks, nerve signal speed and sensitivity to temperature were restored to normal in diabetic mice injected with the bone marrow cells.

A fraction of the bone marrow cells appear to become endothelial cells although many of them retain characteristics that make them look like white blood cells. However, they secrete molecules that stimulate the growth of both endothelial cells and Schwann cells, which protect and insulate peripheral nerves, the authors found.

Bone marrow-derived EPCs have also been used in studies of heart muscle repair after heart attack. However, most previous studies indicate that they disappear from the heart muscle after a few weeks.

"We were surprised to find that in this specific environment, they engraft and survive longer than in other tissues," Yoon says. "These cells appear to home to peripheral nerves."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>