Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells can heal nerves in diabetes model

06.02.2009
Transplanting cells that replenish blood vessels can also restore nerve function in an animal model of diabetic neuropathy, Emory researchers have found.

The results are described online this week in the journal Circulation.

The majority of people with diabetes have some form of neuropathy--damage to the peripheral nerves that can cause a loss of sensation in hands, arms, feet or legs. The damage, caused by high blood sugar, occurs gradually and in advanced cases can lead to amputation. Scientists have connected the damage to problems with peripheral nerves' blood supply.

Cultured cells from the bone marrow can promote the regrowth of both blood vessels and the protective lining of nerves in the limbs of diabetic animals, a team led by Young-sup Yoon, MD, PhD, associate professor of medicine (cardiology) at Emory University School of Medicine, found.

Bone marrow is thought to contain endothelial progenitor cells (EPCs), which can divide into endothelial cells, forming a "patch" for damaged blood vessels.

Yoon's team cultured bone marrow cells in a way designed to enrich them for EPCs and injected them next to the sciatic nerves of diabetic mice. The sciatic nerve is a large nerve that runs from the back to the rear leg. The mice were made diabetic by giving them streptozocin, a drug that poisons insulin-producing cells in the pancreas.

The team found that over several weeks, nerve signal speed and sensitivity to temperature were restored to normal in diabetic mice injected with the bone marrow cells.

A fraction of the bone marrow cells appear to become endothelial cells although many of them retain characteristics that make them look like white blood cells. However, they secrete molecules that stimulate the growth of both endothelial cells and Schwann cells, which protect and insulate peripheral nerves, the authors found.

Bone marrow-derived EPCs have also been used in studies of heart muscle repair after heart attack. However, most previous studies indicate that they disappear from the heart muscle after a few weeks.

"We were surprised to find that in this specific environment, they engraft and survive longer than in other tissues," Yoon says. "These cells appear to home to peripheral nerves."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>