Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonding for color

09.02.2009
Unscrambling the link between molecular bonding and distributing pigment leads to potential therapeutics for a rare skin disease

A RIKEN-led team of molecular biologists has determined the specific bonding leading to the formation of a protein complex involved in distributing pigment throughout the skin. Disruption of this membrane transport complex leads to the rare, lethal Griscelli syndrome for which there is no effective treatment.

Patients show symptoms of albinism, suffer immunodeficiency, and typically die in early childhood. The work may stimulate the development of therapeutic drugs for the condition.

Members of the Rab protein family—of which there are more than 60 in humans—are thought to be essential to membrane trafficking, an important form of communication and distribution within cells. Rab proteins are typically bound to membranes either in an inactive guanine diphosphate form or an active triphosphate form which works through specific effector molecules to promote membrane trafficking.

The pigment melanin, which protects against radiation damage, is made and distributed within vesicles called melanosomes in skin color cells known as melanocytes. Rab27, which comes in two forms A and B, binds into a complex with the effector protein Slac2-a and myosin Va to transfer melanosomes onto actin filaments. The complex then transports the melanosomes along the filaments to where Rab27 uses another effector molecule to anchor them to the outer membrane of the cell.

Researchers from the RIKEN Systems and Structural Biology Center in Yokohama together with colleagues from Tohoku University were able to crystallize the Rab27B/Slac2-a complex and solve its structure using x-ray diffraction. As active Rab27 proteins are notoriously difficult to crystallize, this was the first mammalian complex where the binding of such a protein with its effector molecule could be thoroughly investigated. The results were published recently in the journal Structure1.

The researchers found three contact regions between Rab27B and Slac2-a, of which only one was involved in specific recognition. Mutations affecting any of the several specific intermolecular hydrogen bonds in this region were fundamentally disruptive, and some of them led to Griscelli’s syndrome. The group was able to verify the structure by taking another Rab protein, Rab3A, and engineering it to bind Slac2-a. The Rab3A amino acid sequence had to be altered by only four amino acid residues in the critical binding area to form the complex with Slac2-a.

“We are hoping that pharmaceutical companies will be able to use our structure as a basis for drugs which can be used to treat conditions like Griscelli’s syndrome,” says first author Mutsuko Kukimoto-Niino.

Reference

1. Kukimoto-Niino, M., Sakamoto, A., Kanno, E., Hanawa-Suetsugu, K., Terada, T., Shirouzu, M., Fukuda, M. & Yokoyama, S. Structural basis for the exclusive specificity of Slac2-a/melanophilin for the Rab27 GTPases. Structure 16, 1478–1490 (2008).

The corresponding author for this highlight is based at the RIKEN Systems and Structural Biology Research Center

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/643/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>