Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body's fatty folds may help fight kidney failure

21.03.2014

Stem cells from the body's omentum may preserve and improve kidney function

A fatty fold of tissue within the abdomen that is a rich source of stem cells can help heal diseased kidneys when fused to the organs, according to a study conducted in rats. The findings, which appear in an upcoming issue of the Journal of the American Society of Nephrology (JASN), suggest that stem cells from within a chronic kidney disease patient's own abdomen could be used to preserve and possibly improve kidney function.

Although adult stem cells have shown promise in treating experimental acute kidney diseases, it's unknown whether they might also alleviate chronic kidney diseases. Such a treatment strategy would typically involve injecting cells frequently over a period of many months and years because stem cells do not survive in the body for more than a few days after injection.

Ashok Singh, PhD (John Stroger, Jr Hospital of Cook County) and his colleagues attempted to overcome this hurdle in rats with kidney disease by connecting the omentum, a fatty fold of tissue that lies close to the kidney and is a rich source of stem cells, to the kidney. "This maneuver allowed us to permanently lodge stem cells in contact with the diseased kidney," explained Dr. Singh.

... more about:
»CKD »Nephrology »abdomen »diseases »failure

After 12 weeks, the omentum remained fused to the kidney, which showed signs of improved function. "The progression of chronic kidney disease was slowed due to the continuous migration of stem cells from the omentum to the diseased kidney, resulting in healing of the kidney," said Dr. Singh.

The results indicate that stem cells indeed possess the power to slow or even reverse chronic kidney disease, provided the cells are allowed to remain in the diseased kidney for a prolonged period of time.

"Attaching the omentum, a supposedly useless organ lying close to the kidney, to the diseased kidney could be put into practice after some more developmental work," said Dr. Singh. "By this technique, patients would be using their own stem cells lying in the omentum to cure their kidneys without depending on outside sources of stem cells."

In an accompanying editorial, Christof Westenfelder, MD (University of Utah) noted that the data reported by Dr. Singh and his colleagues are "novel and scientifically interesting." After pointing to some limitations to the applicability of this technology to clinical CKD, he stated that "further studies are needed to fully define the complex nature of the omentum's ability to heal injured organs and to establish its potential utility in patients with renal diseases."

###

Highlights

  • In rats with kidney disease, functioning of the kidney improved when the organ was fused with the omentum, a fatty fold of tissue that lies close to the kidney and is a rich source of stem cells.
  • Stem cells from a chronic kidney disease patient's own omentum may help heal diseased kidneys without the need for an outside source of cells. 
  • 60 million people globally have chronic kidney disease. 

Study co-authors include Ignacio Garcia-Gomez, PhD, Nishit Pancholi, MD, Jilpa Patel, MD, K P Gudehithlu, PhD, Peter Hart, MD, George Dunea, MD, and J A L Arruda, MD.

Disclosures: The authors reported no financial disclosures.

The article, entitled "Activated Omentum Slows Progression of CKD," will appear online at http://jasn.asnjournals.org/ on March 13, 2014.

The editorial, entitled "Does the Greater Omentum ("Policeman of the Abdomen") Possess Therapeutic Utility in CKD?" will appear online at http://jasn.asnjournals.org/ on March 13, 2014.

The content of this article does not reflect the views or opinions of The American Society of Nephrology (ASN). Responsibility for the information and views expressed therein lies entirely with the author(s). ASN does not offer medical advice. All content in ASN publications is for informational purposes only, and is not intended to cover all possible uses, directions, precautions, drug interactions, or adverse effects. This content should not be used during a medical emergency or for the diagnosis or treatment of any medical condition. Please consult your doctor or other qualified health care provider if you have any questions about a medical condition, or before taking any drug, changing your diet or commencing or discontinuing any course of treatment. Do not ignore or delay obtaining professional medical advice because of information accessed through ASN. Call 911 or your doctor for all medical emergencies.

Founded in 1966, and with more than 14,000 members, the American Society of Nephrology (ASN) leads the fight against kidney disease by educating health professionals, sharing new knowledge, advancing research, and advocating the highest quality care for patients.

Tracy Hampton | EurekAlert!
Further information:
http://www.nasw.org

Further reports about: CKD Nephrology abdomen diseases failure

More articles from Health and Medicine:

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>