Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body heat, fermentation drive new drug-delivery 'micropump'

12.09.2012
Researchers have created a new type of miniature pump activated by body heat that could be used in drug-delivery patches powered by fermentation.

The micropump contains Baker's yeast and sugar in a small chamber. When water is added and the patch is placed on the skin, the body heat and the added water causes the yeast and sugar to ferment, generating a small amount of carbon dioxide gas. The gas pushes against a membrane and has been shown to continually pump for several hours, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

Such miniature pumps could make possible drug-delivery patches that use arrays of "microneedles" to deliver a wider range of medications than now possible with conventional patches. Unlike many other micropumps under development or in commercial use, the new technology requires no batteries, said Ziaie, who is working with doctoral student Manuel Ochoa.

"This just needs yeast, sugar, water and your own body heat," Ziaie said.

The robustness of yeast allows for long shelf life, and the design is ideal for mass production, Ochoa said.

"It would be easy to fabricate because it's just a few layers of polymers sandwiched together and bonded," he said.

Findings were detailed in a research paper published online in August in the journal Lab on a Chip. The paper was written by Ochoa and Ziaie, and the research is based at Purdue's Birck Nanotechnology Center in the university's Discovery Park.

The "the microorganism-powered thermopneumatic pump" is made out of layers of a rubberlike polymer, called polydimethylsiloxane, which is used commercially for diaphragms in pumps. The prototype is 1.5 centimeters long.
Current "transdermal" patches are limited to delivering drugs that, like nicotine, are made of small hydrophobic molecules that can be absorbed through the skin, Ziaie said.

"Many drugs, including those for treating cancer and autoimmune disorders cannot be delivered with patches because they are large molecules that won't go through the skin," he said. "Although transdermal drug delivery via microneedle arrays has long been identified as a viable and promising method for delivering large hydrophilic molecules across the skin, a suitable pump has been hard to develop."

Patches that used arrays of tiny microneedles could deliver a multitude of drugs, and the needles do not cause pain because they barely penetrate the skin, Ziaie said. The patches require a pump to push the drugs through the narrow needles, which have a diameter of about 20 microns, or roughly one-fourth as wide as a human hair.

Most pumps proposed for drug-delivery applications rely on an on-board power source, which is bulky, costly and requires complex power-management circuits to conserve battery life.

"Our approach is much more simple," Ziaie said. "It could be a disposable transdermal pump. You just inject water into the patch and place it on your skin. After it's used up, you would throw it away."

Researchers have filed an application for a provisional patent on the device.
Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Babak Ziaie, 765-494-0725, bziaie@purdue.edu

Note to Journalists: A copy of the research paper is available by contacting Emil Venere, 765-494-4709, venere@purdue.edu

ABSTRACT

A fermentation-powered thermopneumatic pump for biomedical applications

Manuel Ochoa ac and Babak Ziaie *abc

a School of Electrical and Computer Engineering, Purdue University

b Weldon School of Biomedical Engineering

c Birck Nanotechnology Center

We present a microorganism-powered thermopneumatic pump that utilizes temperature-dependent slow-kinetics gas (carbon dioxide) generating fermentation of yeast as a pressure source. The pump consists of stacked layers of polydimethylsiloxane (PDMS) and a silicon substrate that form a drug reservoir, and a yeast-solution-filled working chamber. The pump operates by the displacement of a drug due to the generation of gas produced via yeast fermentation carried out at skin temperatures. The robustness of yeast allows for long shelf life under extreme environmental conditions (50 °C, >250 MPa, 5-8% humidity). The generation of carbon dioxide is a linear function of time for a given temperature, thus allowing for a controlled volume displacement. A polymeric prototype (dimensions 15 mm x 15 mm x 10 mm) with a slow flow rate of

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>