Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body heat, fermentation drive new drug-delivery 'micropump'

12.09.2012
Researchers have created a new type of miniature pump activated by body heat that could be used in drug-delivery patches powered by fermentation.

The micropump contains Baker's yeast and sugar in a small chamber. When water is added and the patch is placed on the skin, the body heat and the added water causes the yeast and sugar to ferment, generating a small amount of carbon dioxide gas. The gas pushes against a membrane and has been shown to continually pump for several hours, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

Such miniature pumps could make possible drug-delivery patches that use arrays of "microneedles" to deliver a wider range of medications than now possible with conventional patches. Unlike many other micropumps under development or in commercial use, the new technology requires no batteries, said Ziaie, who is working with doctoral student Manuel Ochoa.

"This just needs yeast, sugar, water and your own body heat," Ziaie said.

The robustness of yeast allows for long shelf life, and the design is ideal for mass production, Ochoa said.

"It would be easy to fabricate because it's just a few layers of polymers sandwiched together and bonded," he said.

Findings were detailed in a research paper published online in August in the journal Lab on a Chip. The paper was written by Ochoa and Ziaie, and the research is based at Purdue's Birck Nanotechnology Center in the university's Discovery Park.

The "the microorganism-powered thermopneumatic pump" is made out of layers of a rubberlike polymer, called polydimethylsiloxane, which is used commercially for diaphragms in pumps. The prototype is 1.5 centimeters long.
Current "transdermal" patches are limited to delivering drugs that, like nicotine, are made of small hydrophobic molecules that can be absorbed through the skin, Ziaie said.

"Many drugs, including those for treating cancer and autoimmune disorders cannot be delivered with patches because they are large molecules that won't go through the skin," he said. "Although transdermal drug delivery via microneedle arrays has long been identified as a viable and promising method for delivering large hydrophilic molecules across the skin, a suitable pump has been hard to develop."

Patches that used arrays of tiny microneedles could deliver a multitude of drugs, and the needles do not cause pain because they barely penetrate the skin, Ziaie said. The patches require a pump to push the drugs through the narrow needles, which have a diameter of about 20 microns, or roughly one-fourth as wide as a human hair.

Most pumps proposed for drug-delivery applications rely on an on-board power source, which is bulky, costly and requires complex power-management circuits to conserve battery life.

"Our approach is much more simple," Ziaie said. "It could be a disposable transdermal pump. You just inject water into the patch and place it on your skin. After it's used up, you would throw it away."

Researchers have filed an application for a provisional patent on the device.
Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Babak Ziaie, 765-494-0725, bziaie@purdue.edu

Note to Journalists: A copy of the research paper is available by contacting Emil Venere, 765-494-4709, venere@purdue.edu

ABSTRACT

A fermentation-powered thermopneumatic pump for biomedical applications

Manuel Ochoa ac and Babak Ziaie *abc

a School of Electrical and Computer Engineering, Purdue University

b Weldon School of Biomedical Engineering

c Birck Nanotechnology Center

We present a microorganism-powered thermopneumatic pump that utilizes temperature-dependent slow-kinetics gas (carbon dioxide) generating fermentation of yeast as a pressure source. The pump consists of stacked layers of polydimethylsiloxane (PDMS) and a silicon substrate that form a drug reservoir, and a yeast-solution-filled working chamber. The pump operates by the displacement of a drug due to the generation of gas produced via yeast fermentation carried out at skin temperatures. The robustness of yeast allows for long shelf life under extreme environmental conditions (50 °C, >250 MPa, 5-8% humidity). The generation of carbon dioxide is a linear function of time for a given temperature, thus allowing for a controlled volume displacement. A polymeric prototype (dimensions 15 mm x 15 mm x 10 mm) with a slow flow rate of

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>