Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body clock controls how body burns fat

16.11.2010
UCI study opens new avenue for obesity and diabetes drug development
UC Irvine researchers have discovered that circadian rhythms — the internal body clock — regulate fat metabolism. This helps explain why people burn fat more efficiently at certain times of day and could lead to new pharmaceuticals for obesity, diabetes and energy-related illnesses.

The study was headed by Paolo Sassone-Corsi, Donald Bren Professor and chair of pharmacology. A leading expert on circadian rhythms, he discovered many of the key molecular switches governing these biological processes. He and his colleagues found that one of these, a protein called PER2, directly controls PPAR-gamma, a protein essential for lipid metabolism. Since circadian proteins are activated by 24-hour, light-dark patterns, PER2 turns on and off PPAR-gamma’s metabolic capabilities at regular intervals.

“What surprised us most, though, is that PER2 targets one specific amino acid on the surface of the PPAR-gamma molecule,” Sassone-Corsi said. “This kind of specificity is very rare in cell biology, which makes it exciting, because it presents us with a singular target for drug development.”

Daniele Piomelli, Louise Turner Arnold Chair in Neurosciences at UCI, and Todd Leff, associate professor of pathology at Wayne State University in Detroit, collaborated on the study, which appears this month in Cell Metabolism.

Twenty-four-hour circadian rhythms regulate fundamental biological and physiological processes in almost all organisms. They anticipate environmental changes and adapt certain bodily functions to the appropriate time of day. Disruption of these cycles can profoundly influence human health and has been linked to obesity, diabetes, insomnia, depression, heart disease and cancer.

Last year, Sassone-Corsi helped discover that proteins involved with circadian rhythms and metabolism are intrinsically linked and dependent upon each other to ensure that cells operate properly and remain healthy.

Rajesh H. Amin and James G. Granneman of Wayne State University and UCI’s Benedetto Grimaldi, Marina Maria Bellet, Sayako Katada, Giuseppe Astarita and Jun Hirayama contributed to the current study, supported by the National Institutes of Health.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.xuci.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>