Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test could identify smokers at higher risk for heart disease, UT Southwestern researchers find

25.10.2011
A simple blood test could someday quantify a smoker's lung toxicity and danger of heart disease, researchers at UT Southwestern Medical Center have found.

Nearly one in five adults in the U.S. smoke, and smoking-related medical expenses and loss of productivity exceeds $167 billion annually, according to the Centers for Disease Control and Prevention.

Levels of a lung protein found in the blood of smokers could indicate their risk of dangerous plaque buildup in blood vessels, said Dr. Anand Rohatgi, assistant professor of internal medicine at UT Southwestern and co-lead author of the study available in Arteriosclerosis, Thrombosis, and Vascular Biology, a publication of the American Heart Association.

"We now are close to having a blood test to help measure the smoking-related effects that contribute to atherosclerotic heart disease," Dr. Rohatgi said. "Smoking is one of the biggest contributors to the development of heart disease."

Smokers are at an increased risk of heart attack, stroke and dying from heart disease, but the risk varies among individuals. Until this study, there had been no simple blood test to measure the varied effects of smoking on heart disease.

Researchers determined the amount of circulating pulmonary surfactant B (SP-B), a protein found in damaged lung cells, in more than 3,200 Dallas Heart Study participants ages 30 to 65. The Dallas Heart Study was a groundbreaking investigation of cardiovascular disease that first involved more than 6,100 Dallas County residents who provided blood samples and underwent blood vessel scans with magnetic resonance imaging and computerized tomography.

The researchers found that smokers who had higher levels of SP-B also had more buildup of dangerous plaque in the aorta – the largest artery in the body, with branches leading to the abdomen, pelvis and legs.

The test is still being evaluated and is not available for commercial use. The next step, said Dr. Rohatgi, is to investigate whether SP-B causes atherosclerosis or is simply a marker of the disease, and to determine whether decreasing levels of SP-B will improve heart disease outcomes.

Other UT Southwestern researchers involved in the study were co-lead author Dr. Ann Nguyen, resident in internal medicine; Dr. Christine Garcia, assistant professor in the Eugene McDermott Center for Human Growth and Development and in internal medicine; Colby Ayers, faculty associate in clinical sciences; Dr. Sandeep Das, assistant professor of internal medicine; Dr. Susan Lakoski, assistant professor of internal medicine; Dr. Jarett Berry, assistant professor of internal medicine; Dr. Amit Khera, associate professor of internal medicine; Dr. Darren McGuire, associate professor of internal medicine; and Dr. James de Lemos, professor of internal medicine.

The study was funded by the Donald W. Reynolds Foundation and the National Institutes of Health. Alere provided assay measurements.

Visit http://www.utsouthwestern.edu/heartlungvascular to learn more about clinical services in cardiology at UT Southwestern.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>