Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test could identify smokers at higher risk for heart disease, UT Southwestern researchers find

25.10.2011
A simple blood test could someday quantify a smoker's lung toxicity and danger of heart disease, researchers at UT Southwestern Medical Center have found.

Nearly one in five adults in the U.S. smoke, and smoking-related medical expenses and loss of productivity exceeds $167 billion annually, according to the Centers for Disease Control and Prevention.

Levels of a lung protein found in the blood of smokers could indicate their risk of dangerous plaque buildup in blood vessels, said Dr. Anand Rohatgi, assistant professor of internal medicine at UT Southwestern and co-lead author of the study available in Arteriosclerosis, Thrombosis, and Vascular Biology, a publication of the American Heart Association.

"We now are close to having a blood test to help measure the smoking-related effects that contribute to atherosclerotic heart disease," Dr. Rohatgi said. "Smoking is one of the biggest contributors to the development of heart disease."

Smokers are at an increased risk of heart attack, stroke and dying from heart disease, but the risk varies among individuals. Until this study, there had been no simple blood test to measure the varied effects of smoking on heart disease.

Researchers determined the amount of circulating pulmonary surfactant B (SP-B), a protein found in damaged lung cells, in more than 3,200 Dallas Heart Study participants ages 30 to 65. The Dallas Heart Study was a groundbreaking investigation of cardiovascular disease that first involved more than 6,100 Dallas County residents who provided blood samples and underwent blood vessel scans with magnetic resonance imaging and computerized tomography.

The researchers found that smokers who had higher levels of SP-B also had more buildup of dangerous plaque in the aorta – the largest artery in the body, with branches leading to the abdomen, pelvis and legs.

The test is still being evaluated and is not available for commercial use. The next step, said Dr. Rohatgi, is to investigate whether SP-B causes atherosclerosis or is simply a marker of the disease, and to determine whether decreasing levels of SP-B will improve heart disease outcomes.

Other UT Southwestern researchers involved in the study were co-lead author Dr. Ann Nguyen, resident in internal medicine; Dr. Christine Garcia, assistant professor in the Eugene McDermott Center for Human Growth and Development and in internal medicine; Colby Ayers, faculty associate in clinical sciences; Dr. Sandeep Das, assistant professor of internal medicine; Dr. Susan Lakoski, assistant professor of internal medicine; Dr. Jarett Berry, assistant professor of internal medicine; Dr. Amit Khera, associate professor of internal medicine; Dr. Darren McGuire, associate professor of internal medicine; and Dr. James de Lemos, professor of internal medicine.

The study was funded by the Donald W. Reynolds Foundation and the National Institutes of Health. Alere provided assay measurements.

Visit http://www.utsouthwestern.edu/heartlungvascular to learn more about clinical services in cardiology at UT Southwestern.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>