Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test identifies women at risk from Alzheimer's

06.11.2009
Middle-aged women with high levels of a specific amino acid in their blood are twice as likely to suffer from Alzheimer's many years later, reveals a thesis from the Sahlgrenska Academy at the University of Gothenburg, Sweden. This discovery this could lead to a new and simple way of determining who is at risk long before there are any signs of the illness.

The thesis is based on the Prospective Population Study of Women in Gothenburg, which was started at the end of the 1960s when almost 1,500 women between the ages of 38 and 60 were examined, asked questions about their health and had blood samples taken. Nearly all of the samples have now been analysed and compared with information on who went on to suffer from Alzheimer's and dementia much later.

"Alzheimer's disease was more than twice as common among the women with the highest levels of homocysteine than among those with the lowest, and the risk for any kind of dementia was 70 per cent higher," says doctor Dimitri Zylberstein, author of the thesis.

Homocysteine is an amino acid that is important for the body's metabolism. It is known that high levels of homocysteine can damage the blood vessels and increase the risk of blood clots. Previous longitudinal studies linking homocysteine and dementia had 8 years of follow-up at most. The present study is by far the longest one with follow-up time of 35 years. The study is also the first to show association between homocysteine levels in middle aged women and dementia development several decades later. The researchers do not yet know whether it is the homocysteine itself that damages the brain, or whether there is some other underlying factor that both increases levels of the homocysteine and causes dementia.

Historically elevated homocysteine levels were related to certain vitamin defficiencies (B12 anf folate). Today we know that high homocysteine levels might be present even with perfectly normal vitamin status. "These days we in our clinical practice use homocysteine analyses mainly for assessment of vitamin status. However, our results mean that we could use the very same analysis för assessment of individual's risk profile for dementia development. This opens the possibility for future preventive treatment at a very early stage", says Zylberstein.

The thesis also looks at a gene which, in some variants, appears to offer protection against dementia. This gene variant reduces the risk of dementia by no less than 65 percent when present doubled (homozygous) which occures in just one in ten Swedes and by 40 percent when present in mixed form (heterozygous) i additional four of ten Swedes.

"We have only been able to carry out a genetic analysis on just over 550 of the blood samples from the Prospective Population Study of Women, and want to undertake bigger studies before we can say for sure that the gene really does protect against dementia," says professor Lauren Lissner who supervised the thesis. "We hope to be able to perform the same analysis on more samples from the study."

The work was carried out in conjunction with the Neuropsychiatric Epidemiology Research Unit as part of EpiLife, the Sahlgrenska Academy's major research project.

DEMENTIA
The most common symptoms of dementia are forgetfulness, impaired speech and problems with recognition and orientation. It is a condition that can affect all our mental faculties and which is more common as we get older. Around seven per cent of the Swedish population over the age of 65 and just over 20 per cent of the over-80s have severe dementia.
For more information, please contact:
Dimitri Zylberstein, registered physician, mobile: +46 705 64 24 01, dimitri.zylberstein@allmed.gu.se
Thesis for a PhD in medicine at the Sahlgrenska Academy, Institute of Medicine, Department of Public Health and Community Medicine

Title of thesis: Homocysteine and vascular morbidity and dementia in women. A prospective population study.

The thesis was successfully defended.

BY: Elin Lindström Claessen
elin.lindstrom@sahlgrenska.gu.se
+46 31-7863869

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>