Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test identifies women at risk from Alzheimer's

06.11.2009
Middle-aged women with high levels of a specific amino acid in their blood are twice as likely to suffer from Alzheimer's many years later, reveals a thesis from the Sahlgrenska Academy at the University of Gothenburg, Sweden. This discovery this could lead to a new and simple way of determining who is at risk long before there are any signs of the illness.

The thesis is based on the Prospective Population Study of Women in Gothenburg, which was started at the end of the 1960s when almost 1,500 women between the ages of 38 and 60 were examined, asked questions about their health and had blood samples taken. Nearly all of the samples have now been analysed and compared with information on who went on to suffer from Alzheimer's and dementia much later.

"Alzheimer's disease was more than twice as common among the women with the highest levels of homocysteine than among those with the lowest, and the risk for any kind of dementia was 70 per cent higher," says doctor Dimitri Zylberstein, author of the thesis.

Homocysteine is an amino acid that is important for the body's metabolism. It is known that high levels of homocysteine can damage the blood vessels and increase the risk of blood clots. Previous longitudinal studies linking homocysteine and dementia had 8 years of follow-up at most. The present study is by far the longest one with follow-up time of 35 years. The study is also the first to show association between homocysteine levels in middle aged women and dementia development several decades later. The researchers do not yet know whether it is the homocysteine itself that damages the brain, or whether there is some other underlying factor that both increases levels of the homocysteine and causes dementia.

Historically elevated homocysteine levels were related to certain vitamin defficiencies (B12 anf folate). Today we know that high homocysteine levels might be present even with perfectly normal vitamin status. "These days we in our clinical practice use homocysteine analyses mainly for assessment of vitamin status. However, our results mean that we could use the very same analysis för assessment of individual's risk profile for dementia development. This opens the possibility for future preventive treatment at a very early stage", says Zylberstein.

The thesis also looks at a gene which, in some variants, appears to offer protection against dementia. This gene variant reduces the risk of dementia by no less than 65 percent when present doubled (homozygous) which occures in just one in ten Swedes and by 40 percent when present in mixed form (heterozygous) i additional four of ten Swedes.

"We have only been able to carry out a genetic analysis on just over 550 of the blood samples from the Prospective Population Study of Women, and want to undertake bigger studies before we can say for sure that the gene really does protect against dementia," says professor Lauren Lissner who supervised the thesis. "We hope to be able to perform the same analysis on more samples from the study."

The work was carried out in conjunction with the Neuropsychiatric Epidemiology Research Unit as part of EpiLife, the Sahlgrenska Academy's major research project.

DEMENTIA
The most common symptoms of dementia are forgetfulness, impaired speech and problems with recognition and orientation. It is a condition that can affect all our mental faculties and which is more common as we get older. Around seven per cent of the Swedish population over the age of 65 and just over 20 per cent of the over-80s have severe dementia.
For more information, please contact:
Dimitri Zylberstein, registered physician, mobile: +46 705 64 24 01, dimitri.zylberstein@allmed.gu.se
Thesis for a PhD in medicine at the Sahlgrenska Academy, Institute of Medicine, Department of Public Health and Community Medicine

Title of thesis: Homocysteine and vascular morbidity and dementia in women. A prospective population study.

The thesis was successfully defended.

BY: Elin Lindström Claessen
elin.lindstrom@sahlgrenska.gu.se
+46 31-7863869

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se

More articles from Health and Medicine:

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>