Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test identifies women at risk from Alzheimer's

06.11.2009
Middle-aged women with high levels of a specific amino acid in their blood are twice as likely to suffer from Alzheimer's many years later, reveals a thesis from the Sahlgrenska Academy at the University of Gothenburg, Sweden. This discovery this could lead to a new and simple way of determining who is at risk long before there are any signs of the illness.

The thesis is based on the Prospective Population Study of Women in Gothenburg, which was started at the end of the 1960s when almost 1,500 women between the ages of 38 and 60 were examined, asked questions about their health and had blood samples taken. Nearly all of the samples have now been analysed and compared with information on who went on to suffer from Alzheimer's and dementia much later.

"Alzheimer's disease was more than twice as common among the women with the highest levels of homocysteine than among those with the lowest, and the risk for any kind of dementia was 70 per cent higher," says doctor Dimitri Zylberstein, author of the thesis.

Homocysteine is an amino acid that is important for the body's metabolism. It is known that high levels of homocysteine can damage the blood vessels and increase the risk of blood clots. Previous longitudinal studies linking homocysteine and dementia had 8 years of follow-up at most. The present study is by far the longest one with follow-up time of 35 years. The study is also the first to show association between homocysteine levels in middle aged women and dementia development several decades later. The researchers do not yet know whether it is the homocysteine itself that damages the brain, or whether there is some other underlying factor that both increases levels of the homocysteine and causes dementia.

Historically elevated homocysteine levels were related to certain vitamin defficiencies (B12 anf folate). Today we know that high homocysteine levels might be present even with perfectly normal vitamin status. "These days we in our clinical practice use homocysteine analyses mainly for assessment of vitamin status. However, our results mean that we could use the very same analysis för assessment of individual's risk profile for dementia development. This opens the possibility for future preventive treatment at a very early stage", says Zylberstein.

The thesis also looks at a gene which, in some variants, appears to offer protection against dementia. This gene variant reduces the risk of dementia by no less than 65 percent when present doubled (homozygous) which occures in just one in ten Swedes and by 40 percent when present in mixed form (heterozygous) i additional four of ten Swedes.

"We have only been able to carry out a genetic analysis on just over 550 of the blood samples from the Prospective Population Study of Women, and want to undertake bigger studies before we can say for sure that the gene really does protect against dementia," says professor Lauren Lissner who supervised the thesis. "We hope to be able to perform the same analysis on more samples from the study."

The work was carried out in conjunction with the Neuropsychiatric Epidemiology Research Unit as part of EpiLife, the Sahlgrenska Academy's major research project.

DEMENTIA
The most common symptoms of dementia are forgetfulness, impaired speech and problems with recognition and orientation. It is a condition that can affect all our mental faculties and which is more common as we get older. Around seven per cent of the Swedish population over the age of 65 and just over 20 per cent of the over-80s have severe dementia.
For more information, please contact:
Dimitri Zylberstein, registered physician, mobile: +46 705 64 24 01, dimitri.zylberstein@allmed.gu.se
Thesis for a PhD in medicine at the Sahlgrenska Academy, Institute of Medicine, Department of Public Health and Community Medicine

Title of thesis: Homocysteine and vascular morbidity and dementia in women. A prospective population study.

The thesis was successfully defended.

BY: Elin Lindström Claessen
elin.lindstrom@sahlgrenska.gu.se
+46 31-7863869

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>