Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible new blood test to diagnose heart attacks

21.09.2011
Loyola University Chicago Stritch School of Medicine researchers are reporting a possible new blood test to help diagnose heart attacks.

In the Journal of Molecular and Cellular Cardiology, researchers report that a large protein known as cardiac myosin binding protein-C (cMyBP-C) is released to the blood following a heart attack.

"This potentially could become the basis for a new test, used in conjunction with other blood tests, to help diagnose heart attacks," said senior author Sakthivel Sadayappan, PhD. "This is the beginning. A lot of additional studies will be necessary to establish cMyBP-C as a true biomarker for heart attacks."

Sadayappan is an assistant professor in the Department of Cell and Molecular Physiology at Loyola University Chicago Stritch School of Medicine. First author is Suresh Govindan, PhD, a postdoctoral researcher in Sadayappan's lab.

Between 60 and 70 percent of all patients who complain of chest pain do not have heart attacks. Many of these patients are admitted to the hospital, at considerable time and expense, until a heart attack is definitively ruled out.

An electrocardiogram can diagnose major heart attacks, but not minor ones. There also are blood tests for various proteins associated with heart attacks. But most of these proteins are not specific to the heart. Elevated levels could indicate a problem other than a heart attack, such as a muscle injury.

Only one protein now used in blood tests, called cardiac troponin-I, is specific to the heart. But it takes at least four to six hours for this protein to show up in the blood following a heart attack. So the search is on for another heart attack protein that is specific to the heart.

The Loyola study is the first to find that cMyBP-C is associated with heart attacks. The protein is specific to the heart. And it may be readily detectable in a blood test because of its large molecular size and relatively high concentration in the blood.

Researchers evaluated blood samples from heart attack patients. They also evaluated rats that had experienced heart attacks. They found that in both humans and rats, cMyBP-C was elevated significantly following heart attacks.

Sadayappan said cMyBP-C is a large assembly protein that stabilizes heart muscle structure and regulates cardiac function. During a heart attack, a coronary artery is blocked, and heart muscle cells begin to die due to lack of blood flow and oxygen. As heart cells die, cMyPB-C breaks into fragments and is released into the blood.

"Future studies," Sadayappan and colleagues wrote, "would determine the time course of release, peak concentrations and half life in the circulatory system."

Other co-authors are Andrew McElligott, Saminathan Muthusamy, PhD, David Barefield, Jody L. Martin, PhD, and Kyle K. Henderson, PhD, of Loyola's Stritch School of Medicine; Nandini Nair, MD, PhD, and Enrique Gongora of Texas A&M HSC College of Medicine; Kenneth D. Greis, PhD, of the University of Cincinnati College of Medicine, Pradeep K. Luther, PhD, of Imperial College London; and Saul Winegrad, PhD of the University of Pennsylvania.

The study was supported by grants from the National Institutes of Health and American Heart Association.

Sadayappan holds a provisional patent to determine the risk factors associated with cMyBP-C degradation and release into human body fluid.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>