Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood protein offers help against anemia

27.01.2010
Promising results in mice could prevent fatal iron buildup in humans

A new study shows that a protein found in blood alleviates anemia, a condition in which the body's tissues don't get enough oxygen from the blood. In this animal study, injections of the protein, known as transferrin, also protected against potentially fatal iron overload in mice with thalassemia, a type of inherited anemia that affects millions of people worldwide.

Implications of the study, published in the January 24 online edition of Nature Medicine, could extend well beyond thalassemia to include other types of anemia including sickle cell anemia and myelodysplastic syndromes (bone marrow disorders that often precede leukemia) if proven in humans. The research was conducted by scientists at Albert Einstein College of Medicine of Yeshiva University.

"People who have thalassemia or other types of anemia need frequent blood transfusions over many years to correct the problem," says Mary E. Fabry, Ph.D., professor of medicine at Einstein and a study author. "But the human body has no way to get rid of the massive amount of iron in the transfused blood, and the resulting iron overload - especially its accumulation in the heart and liver – is often fatal. Our study suggests that treatment with transferrin could prevent this."

It's projected that over the next 20 years, more than 900,000 children with thalassemia will be born each year. Ninety-five percent of thalassemia births are in Asian, Indian, and Middle Eastern regions. However, the U.S. is seeing more cases due to a growing influx of immigrants.

In thalassemia, gene mutations lead to underproduction of the globin protein chains that form hemoglobin, the iron-containing, oxygen-carrying molecule in red blood cells. (Normal hemoglobin consists of four globin protein chains – two alpha chains and two beta chains.) Fewer globin chains mean a shortage of red blood cells, a shorter lifespan for red cells that are produced, and anemia.

Thalassemia is classified as alpha or beta thalassemia, depending on which of the globin protein chains are affected. In a 2009 study involving beta thalassemic mice at Einstein, Dr. Fabry and her colleagues made a paradoxical observation: Despite the rodents' anemia and iron overload, injecting them with more iron improved their anemia by increasing both hemoglobin and the number of red cells.

This finding indicated that "overload" iron wasn't accessible for use in making red cells. And it suggested to Yelena Z. Ginzburg, M.D., a postdoctoral research fellow in Dr. Fabry's lab at the time and a senior author of the present study, that transferrin might be able to tap into that stored iron.

Transferrin is a crucially important protein responsible for transporting iron in the bloodstream and delivering it to cells that need it – particularly the cells that develop into red blood cells. "Yelena [now a researcher at the New York Blood Center in New York City] hypothesized that too little transferrin in the circulation may account for the reduced red cell production and anemia observed in beta thalassemia," says Dr. Fabry. "So she decided to see if injections of transferring - obtainable as a byproduct of blood collection – could help in treating thalassemia."

In the present study, the researchers gave the beta thalassemia mice daily injections of human transferrin for 60 days. The results were impressive.

"The injected transferrin killed three birds with one stone," says Dr. Fabry. "It not only helped in depleting the iron overload that can be so toxic, but it recycled that iron into new red blood cells that ameliorated the anemia. Plus, those red cells survived for a longer time because they had fewer defects."

The Einstein researchers are cautiously optimistic that transferrin could have similar benefits for people.

"Before doing clinical trials, we need to work out a lot of details such as the proper dose of transferrin and the frequency of treatment," says Eric E. Bouhassira, Ph.D., another author of the study who is professor cell biology and of medicine and the Ingeborg and Ira Leon Rennert Professor of Stem Cell Biology and Regenerative Medicine at Einstein. "But transferrin's striking effectiveness in reducing iron overload makes me hopeful that people with anemia could really benefit from it."

The paper, "Transferrin therapy ameliorates disease in beta-thalassemic mice," appears in the January 24 online edition of Nature Medicine. Other researchers involved in the study were Sandra M. Suzuka, M.S., and Charles B. Hall, Ph.D., Einstein; Anne C. Rybicki, Ph.D., Montefiore Medical Center; Huihui Li, New York Blood Center; Leni von Bonsdorff, Sanquin, Helsinki, Finland; and William Breuer and Z. Ioav Cabantchik, Hebrew University of Jerusalem.

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 2,775 faculty members, 722 M.D. students, 243 Ph.D. students, 128 students in the combined M.D./Ph.D. program, and approximately 350 postdoctoral research fellows. In 2009, Einstein received more than $155 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving eight hospitals and medical centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>