Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood flows differently through the brains of schizophrenic patients

26.05.2010
Researchers in Germany have used a magnetic resonance imaging (MRI) technique called continuous arterial spin labeling (CASL) to map cerebral blood flow patterns in schizophrenic patients quickly and without using radiation or contrast agents. Their findings appear in the online edition and July printed issue of the journal Radiology.

"Arterial spin labeling is a powerful technique that can help reduce the cost and complexity of examinations," said the study's lead author, Lukas Scheef, M.D., from the Department of Radiology at University of Bonn, Germany. "It can also be more readily repeated than methods that involve the use of contrast agents and radiotracers."

Schizophrenia is a chronic and severe brain disorder that affects approximately 2.4 million American adults, according to the National Institute of Mental Health. Symptoms can include hallucinations, delusions, disordered thinking, movement disorders, social withdrawal and cognitive deficits.

In the study, conducted at the University Hospital of Bonn in Germany, researchers used CASL MRI to compare cerebral blood flow in 11 non-medicated patients with schizophrenia and 25 healthy controls. The patient group included three women with a mean age of 36 years and eight men with a mean age of 32 years. The control group included 13 women (mean age, 29 years) and 12 men (mean age, 30 years).

The results revealed that compared to the healthy controls, the schizophrenic patients had extensive areas of hypoperfusion, or lower blood flow than normal in the frontal lobes and frontal cortex, anterior and medial cingulate gyri, and parietal lobes. These regions are associated with a number of higher cognitive functions including planning, decision making, judgment and impulse control.

Hyperperfusion, or increased blood flow, was observed in the cerebellum, brainstem and thalamus of the schizophrenic patients.

"Our CASL study revealed patterns of hypo- and hyperperfusion similar to the perfusion patterns observed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) studies of schizophrenic patients," Dr. Scheef said.

Unlike PET and SPECT studies, CASL MR images can be quickly acquired without the use of ionizing radiation or contrast agents. In CASL MRI, arterial blood water is magnetically labeled in order to non-invasively measure cerebral blood flow.

"CASL MRI may allow researchers to gain a better understanding of schizophrenia," Dr. Scheef said. "In the long run, it may help to individualize and optimize treatment."

"Resting-State Perfusion in Non-Medicated Schizophrenic Patients: A Continuous Arterial Spin-Labeling 3.0-T MR Study." Collaborating with Dr. Scheef were Christoph Manka, M.D., Marcel Daamen, Kai-Uwe Kühn, M.D., Wolfgang Maier, M.D., Hans H. Schild, M.D., and Frank Jessen, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.RSNA.org/)

RSNA is an association of more than 44,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>