Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood flows differently through the brains of schizophrenic patients

26.05.2010
Researchers in Germany have used a magnetic resonance imaging (MRI) technique called continuous arterial spin labeling (CASL) to map cerebral blood flow patterns in schizophrenic patients quickly and without using radiation or contrast agents. Their findings appear in the online edition and July printed issue of the journal Radiology.

"Arterial spin labeling is a powerful technique that can help reduce the cost and complexity of examinations," said the study's lead author, Lukas Scheef, M.D., from the Department of Radiology at University of Bonn, Germany. "It can also be more readily repeated than methods that involve the use of contrast agents and radiotracers."

Schizophrenia is a chronic and severe brain disorder that affects approximately 2.4 million American adults, according to the National Institute of Mental Health. Symptoms can include hallucinations, delusions, disordered thinking, movement disorders, social withdrawal and cognitive deficits.

In the study, conducted at the University Hospital of Bonn in Germany, researchers used CASL MRI to compare cerebral blood flow in 11 non-medicated patients with schizophrenia and 25 healthy controls. The patient group included three women with a mean age of 36 years and eight men with a mean age of 32 years. The control group included 13 women (mean age, 29 years) and 12 men (mean age, 30 years).

The results revealed that compared to the healthy controls, the schizophrenic patients had extensive areas of hypoperfusion, or lower blood flow than normal in the frontal lobes and frontal cortex, anterior and medial cingulate gyri, and parietal lobes. These regions are associated with a number of higher cognitive functions including planning, decision making, judgment and impulse control.

Hyperperfusion, or increased blood flow, was observed in the cerebellum, brainstem and thalamus of the schizophrenic patients.

"Our CASL study revealed patterns of hypo- and hyperperfusion similar to the perfusion patterns observed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) studies of schizophrenic patients," Dr. Scheef said.

Unlike PET and SPECT studies, CASL MR images can be quickly acquired without the use of ionizing radiation or contrast agents. In CASL MRI, arterial blood water is magnetically labeled in order to non-invasively measure cerebral blood flow.

"CASL MRI may allow researchers to gain a better understanding of schizophrenia," Dr. Scheef said. "In the long run, it may help to individualize and optimize treatment."

"Resting-State Perfusion in Non-Medicated Schizophrenic Patients: A Continuous Arterial Spin-Labeling 3.0-T MR Study." Collaborating with Dr. Scheef were Christoph Manka, M.D., Marcel Daamen, Kai-Uwe Kühn, M.D., Wolfgang Maier, M.D., Hans H. Schild, M.D., and Frank Jessen, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.RSNA.org/)

RSNA is an association of more than 44,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>