Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood flow in Alzheimer's disease

29.07.2009
Researchers have discovered that the enzyme, endothelin converting enzyme-2 (ECE-2), may cause the decrease in blood flow in the brain seen in Alzheimer's disease and contribute to progression of the disease.

The study by Jennifer Palmer, BRACE/Reverend Williams PhD Scholar and colleagues at the University of Bristol's Dementia Research Group is published in the current issue [July 2009] of the American Journal of Pathology.

Alzheimer's disease is the most common form of dementia, affecting over half a million people in the UK - a figure expected to double in the next 20 years. Aâ peptide, which accumulates in the brain of Alzheimer's disease patients, is thought to lead to narrowing of the blood vessels and reduction of blood flood in the brain. ECE-2 may contribute to the disease by converting an inactive precursor to endothelin-1, which constricts blood vessels and further reduces blood flow.

Jennifer Palmer said: "Our findings raise the possibility that drugs that can block the actions of endothelin-1 and which are already licensed for treating other diseases may also be of benefit for the treatment of Alzheimer's disease."

Much of the funding for Jennifer Palmer's work comes from Bristol-based charity BRACE. The charity's Chief Executive, Mark Poarch added: "This is real progress and opens up new areas for research. It is also good news for the thousands of local people who have raised money to try to beat Alzheimer's. BRACE is stepping up its fundraising to help scientists press on and find a cure."

The researchers had been studying ECE-2 in human brain tissue that was donated to the South West Dementia Brain Bank at the University of Bristol because the enzyme is also able to break down Aâ peptide, which accumulates in Alzheimer's disease. They found that ECE-2 was markedly elevated in Alzheimer's disease. ECE-2 was particularly abundant in nerve cells in a part of the brain that is critical for memory and is severely affected by Alzheimer's disease.

The increase in ECE-2 in Alzheimer's disease is not simply a by-product of nerve cell damage. When the researchers looked at brain tissue from patients with a different type of dementia (vascular dementia), ECE-2 levels were normal – no different from the levels in brain tissue from elderly people without dementia. Further studies showed that the increase seen in Alzheimer's disease of ECE-2 could not be explained by differences in age, gender or time to brain removal after death between the various groups of patients that were studied.

To investigate why ECE-2 might be specifically elevated in Alzheimer's disease, the researchers then examined nerve cells that were grown in a laboratory. They showed that addition of Aâ caused these nerve cells to increase their production of ECE-2. The findings indicate that nerve cells produce more ECE-2 when they are exposed to Aâ.

In the normal brain, blood flow responds to nerve cell activity. If nerve cell activity in a particular part of the brain increases, so does the supply of blood that is needed to meet the extra demand for nutrients such as glucose and oxygen. If this demand is not met, as can happen in Alzheimer's disease, the nerve cells may not function normally and may even sicken and die.

Although the elevated ECE-2 in Alzheimer's disease may help to break down amyloid beta, it may also cause the decrease in blood flow in the brain, through the production of too much endothelin-1. This may have important implications for treatment. Drugs are available that can block the actions of endothelin-1 and which have been shown to treat some other diseases in which excess endothelin-1 reduces blood flow. The findings raise the possibility that these drugs may also be of benefit for the treatment of Alzheimer's disease.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: Alzheimer BRACE ECE-2 blood flow blood vessel brain tissue dementia nerve cell

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>