Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood flow in Alzheimer's disease

29.07.2009
Researchers have discovered that the enzyme, endothelin converting enzyme-2 (ECE-2), may cause the decrease in blood flow in the brain seen in Alzheimer's disease and contribute to progression of the disease.

The study by Jennifer Palmer, BRACE/Reverend Williams PhD Scholar and colleagues at the University of Bristol's Dementia Research Group is published in the current issue [July 2009] of the American Journal of Pathology.

Alzheimer's disease is the most common form of dementia, affecting over half a million people in the UK - a figure expected to double in the next 20 years. Aâ peptide, which accumulates in the brain of Alzheimer's disease patients, is thought to lead to narrowing of the blood vessels and reduction of blood flood in the brain. ECE-2 may contribute to the disease by converting an inactive precursor to endothelin-1, which constricts blood vessels and further reduces blood flow.

Jennifer Palmer said: "Our findings raise the possibility that drugs that can block the actions of endothelin-1 and which are already licensed for treating other diseases may also be of benefit for the treatment of Alzheimer's disease."

Much of the funding for Jennifer Palmer's work comes from Bristol-based charity BRACE. The charity's Chief Executive, Mark Poarch added: "This is real progress and opens up new areas for research. It is also good news for the thousands of local people who have raised money to try to beat Alzheimer's. BRACE is stepping up its fundraising to help scientists press on and find a cure."

The researchers had been studying ECE-2 in human brain tissue that was donated to the South West Dementia Brain Bank at the University of Bristol because the enzyme is also able to break down Aâ peptide, which accumulates in Alzheimer's disease. They found that ECE-2 was markedly elevated in Alzheimer's disease. ECE-2 was particularly abundant in nerve cells in a part of the brain that is critical for memory and is severely affected by Alzheimer's disease.

The increase in ECE-2 in Alzheimer's disease is not simply a by-product of nerve cell damage. When the researchers looked at brain tissue from patients with a different type of dementia (vascular dementia), ECE-2 levels were normal – no different from the levels in brain tissue from elderly people without dementia. Further studies showed that the increase seen in Alzheimer's disease of ECE-2 could not be explained by differences in age, gender or time to brain removal after death between the various groups of patients that were studied.

To investigate why ECE-2 might be specifically elevated in Alzheimer's disease, the researchers then examined nerve cells that were grown in a laboratory. They showed that addition of Aâ caused these nerve cells to increase their production of ECE-2. The findings indicate that nerve cells produce more ECE-2 when they are exposed to Aâ.

In the normal brain, blood flow responds to nerve cell activity. If nerve cell activity in a particular part of the brain increases, so does the supply of blood that is needed to meet the extra demand for nutrients such as glucose and oxygen. If this demand is not met, as can happen in Alzheimer's disease, the nerve cells may not function normally and may even sicken and die.

Although the elevated ECE-2 in Alzheimer's disease may help to break down amyloid beta, it may also cause the decrease in blood flow in the brain, through the production of too much endothelin-1. This may have important implications for treatment. Drugs are available that can block the actions of endothelin-1 and which have been shown to treat some other diseases in which excess endothelin-1 reduces blood flow. The findings raise the possibility that these drugs may also be of benefit for the treatment of Alzheimer's disease.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: Alzheimer BRACE ECE-2 blood flow blood vessel brain tissue dementia nerve cell

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>