Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood flow in Alzheimer's disease

29.07.2009
Researchers have discovered that the enzyme, endothelin converting enzyme-2 (ECE-2), may cause the decrease in blood flow in the brain seen in Alzheimer's disease and contribute to progression of the disease.

The study by Jennifer Palmer, BRACE/Reverend Williams PhD Scholar and colleagues at the University of Bristol's Dementia Research Group is published in the current issue [July 2009] of the American Journal of Pathology.

Alzheimer's disease is the most common form of dementia, affecting over half a million people in the UK - a figure expected to double in the next 20 years. Aâ peptide, which accumulates in the brain of Alzheimer's disease patients, is thought to lead to narrowing of the blood vessels and reduction of blood flood in the brain. ECE-2 may contribute to the disease by converting an inactive precursor to endothelin-1, which constricts blood vessels and further reduces blood flow.

Jennifer Palmer said: "Our findings raise the possibility that drugs that can block the actions of endothelin-1 and which are already licensed for treating other diseases may also be of benefit for the treatment of Alzheimer's disease."

Much of the funding for Jennifer Palmer's work comes from Bristol-based charity BRACE. The charity's Chief Executive, Mark Poarch added: "This is real progress and opens up new areas for research. It is also good news for the thousands of local people who have raised money to try to beat Alzheimer's. BRACE is stepping up its fundraising to help scientists press on and find a cure."

The researchers had been studying ECE-2 in human brain tissue that was donated to the South West Dementia Brain Bank at the University of Bristol because the enzyme is also able to break down Aâ peptide, which accumulates in Alzheimer's disease. They found that ECE-2 was markedly elevated in Alzheimer's disease. ECE-2 was particularly abundant in nerve cells in a part of the brain that is critical for memory and is severely affected by Alzheimer's disease.

The increase in ECE-2 in Alzheimer's disease is not simply a by-product of nerve cell damage. When the researchers looked at brain tissue from patients with a different type of dementia (vascular dementia), ECE-2 levels were normal – no different from the levels in brain tissue from elderly people without dementia. Further studies showed that the increase seen in Alzheimer's disease of ECE-2 could not be explained by differences in age, gender or time to brain removal after death between the various groups of patients that were studied.

To investigate why ECE-2 might be specifically elevated in Alzheimer's disease, the researchers then examined nerve cells that were grown in a laboratory. They showed that addition of Aâ caused these nerve cells to increase their production of ECE-2. The findings indicate that nerve cells produce more ECE-2 when they are exposed to Aâ.

In the normal brain, blood flow responds to nerve cell activity. If nerve cell activity in a particular part of the brain increases, so does the supply of blood that is needed to meet the extra demand for nutrients such as glucose and oxygen. If this demand is not met, as can happen in Alzheimer's disease, the nerve cells may not function normally and may even sicken and die.

Although the elevated ECE-2 in Alzheimer's disease may help to break down amyloid beta, it may also cause the decrease in blood flow in the brain, through the production of too much endothelin-1. This may have important implications for treatment. Drugs are available that can block the actions of endothelin-1 and which have been shown to treat some other diseases in which excess endothelin-1 reduces blood flow. The findings raise the possibility that these drugs may also be of benefit for the treatment of Alzheimer's disease.

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: Alzheimer BRACE ECE-2 blood flow blood vessel brain tissue dementia nerve cell

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>