Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking inflammation could lead to tailored medical treatments

20.09.2011
By using a mouse model of inflammation researchers at the University of Calgary have discovered a new class of molecules that can inhibit the recruitment of some white blood cells to sites of inflammation in the body. A provisional patent has been filed on these molecules by Innovates Calgary.

When there is inflammation in the body, one of the primary defense mechanisms is the movement of white blood cells, known as neutrophils, from the bloodstream into the infected tissue. Neutrophils are specialized cells that kill microbes associated with infection. Although neutrophils are important, their excessive recruitment into tissues can result in damage and contribute to disease.

Current anti-inflammatory drugs block all inflammation in the body. However, these newly discovered molecules target only neutrophils and may offer a more tailored course of treatment for some diseases, for example to help people suffering from inflammatory diseases such as Inflammatory Bowel Disease (IBD).

"This class of novel anti-inflammatory agents set the stage to develop drugs for conditions that have recurrent or chronic inflammation, " says Stephen Robbins, Ph.D, a researcher at the University of Calgary Faculty of Medicine, senior study author and the Director of the Southern Alberta Cancer Research Institute. "The next step in our research will be to test their effectiveness in preclinical studies of inflammatory diseases, including IBD"

"We are excited by the possibility that this research may be clinically useful to alleviate some of the damage that occurs in conditions where chronic inflammation leads to tissue injury," says Elizabeth Long PhD, who is also a University of Calgary researcher and study author.

The study was published this week in the journal Proceedings of the National Academy of Science (PNAS). This study was funded by the Canadian Institute of Health Research and the Alberta Cancer Foundation.

Marta | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>