Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking DNA repair protein could lead to targeted, safer cancer therapy

02.06.2010
Researchers at the University of Pittsburgh Cancer Institute (UPCI) and the School of Medicine have discovered that inhibiting a key molecule in a DNA repair pathway could provide the means to make cancer cells more sensitive to radiation therapy while protecting healthy cells.

The findings are published in Science Signaling and provide new insights into mechanisms of how the body fixes environmentally induced DNA damage and into the deadly neurological disease ataxia-telangiectasia (A-T), said senior author Christopher Bakkenist, Ph.D., assistant professor of radiation oncology, pharmacology and chemical biology at UPCI and the School of Medicine.

"A characteristic symptom of A-T is heightened sensitivity to ionizing radiation, such as X-rays and gamma rays," he said. "If we understand why that happens, then we might be able to reproduce it to make tumor cells vulnerable to radiation treatments while sparing healthy cells, which would make therapy more effective while minimizing side effects."

In A-T, brain areas that control movement progressively degenerate, causing walking and balance problems. Patients carry a gene mutation that stops production of a protein called ATM kinase, which spurs other proteins involved in normal cell division, DNA repair and cell death.

Radiation causes DNA mutations during the process of cell division, when genetic material is copied for a new cell to form. The cell has repair pathways that include checkpoints to look for errors as well as methods to repair them, but if enough mutations accumulate, the cell could become cancerous or self-destruct. A-T patients, who lack the kinase, have a higher risk for developing cancer, Dr. Bakkenist said.

He and his colleagues tested what would happen if they blocked the activity of ATM kinase in cells that make the protein. They had already determined that administering an ATM kinase inhibitor from 15 minutes to 75 minutes after radiation exposure was sufficient to make normal cells more sensitive to the effects of radiation.

To their surprise, they found that inactivation of ATM kinase prevented a type of DNA repair that is essential for proper duplication of genetic material during replication. However, A-T cells did not have this problem despite lacking the kinase; they presumably use another method to check for and correct those errors.

The discovery revealed a new approach to target cancer.

"A characteristic of tumor cells is that they rapidly replicate, possibly because they have mutations that encourage cell division or that thwart repair pathways," Dr. Bakkenist explained. "But ATM kinase remains present in the vast majority of human cancers, so that suggests it is needed by those diseased cells during replication."

Cells that, unlike cancer cells, are not going through what's known as replication stress, would not be affected by an ATM inhibitor and, like A-T cells, likely have another way of repairing certain radiation-induced mutations, he said.

"So that would make cancer cells particularly vulnerable to an ATM inhibitor, while healthy cells should be unaffected," Dr. Bakkenist said.

He and his team are now studying the effects of such inhibitors on pancreatic, lung and breast cancer cells.

Co-authors of the paper are Jason S. White, Ph.D., and Serah Choi, both of the Pitt School of Medicine.

The work was supported by a National Cancer Institute Lung Cancer SPORE grant; the Lung Cancer Research Foundation; the Breast Cancer Research Foundation; and the Frieda G. and Saul F. Shapira BRCA Cancer Research Program.

About UPCI

As the only NCI-designated comprehensive cancer center in western Pennsylvania, UPCI is a recognized leader in providing innovative cancer prevention, detection, diagnosis, and treatment; biomedical research; compassionate patient care and support; and community-based outreach services. UPCI investigators are world-renowned for their work in clinical and basic cancer research.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>