Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blast overpressure is generated from the firing of weapons and may cause brain injury

19.01.2009
The brain may be injured by the noise, which is produced when, for example, an anti-tank weapon (Bazooka, Karl Gustav) or a howitzer (Haubits) is fired. Scientists at the Sahlgrenska Academy demonstrated mild injury to brain tissue. In response to this, the Swedish Armed Forces restricted the number of rounds per day Swedish personnel can be exposed to.

A number of reports, which have appeared during the last few years, have shown that the brain is sensitive to blast. This study determines whether the occupational standards for the highest levels of blast exposure were valid enough to avoid brain injuries.

Traumatic brain injury is very common among war veterans from Iraq and Afghanistan and the majority has been exposed to explosions. The soldiers have symptoms of disorders of memory, mental processes, emotion, sleep, speech, vision and hearing. The symptoms may be similar to those of post traumatic stress syndrome, which may be caused by factors other than combat experience.

The brain may be affected by the blast, which is generated during firing of weapons

The Swedish Armed Forces sponsored a study, which has been carried out by scientists at the Sahlgrenska Academy, University of Gothenburg, Sweden. They have examined the effects of noise after the firing of a Haubits, an anti tank weapon (Karl Gustav) and an automatic rifle and by the detonation of plastic explosives underwater. The study was done on anaesthetized pigs and rats.

“We examined the maximal peak level of the blast in the brain transmitted from the blast in the air, as well as, brain tissue changes that were detected with the microscope, says Annette Säljö, one of the scientists who conducted the study.

The noise produced by the firing of both the haubits and the anti-tank weapon exceeds the occupational standards for highest levels of blast exposure. The scientists found that the maximal peak levels of the blast were unexpectedly high in the brain, i.e. that skin and bone appeared to protect the brain poorly. The results suggest that the degree of transmission of a pressure wave from air or water to the brain depends on the dominating frequencies in the frequency spectrum of the noise; low frequencies are transmitted considerably better than high frequencies.

Blast overpressure may result in haemorrhages in the brain

The microscopic examination of the brain showed that the blast from certain weapons produces small haemorrhages (bleeding) in the brain tissue and the meninges (lining of the brain). The examination also suggested that blast exposure leads to the development of brain edema, i.e. increased fluid content. The scientists were later able to support this finding with other measurements. The results are in agreement with findings in the brains of soldiers who had been injured or died after being exposed to explosions in wars, from WW1 to the war in Iraq.

The Swedish Armed Forces have restricted their safety regulations

In summary, the study shows that the maximal peak levels of blast generated by the firing of certain weapons led to a small but measurable effect on the brains of pigs and rats.

The study also showed that this effect on the brain becomes worse with increasing maximal peak blast levels. The results poses the question as to whether exposure to even lower levels of blast than previous thought injurious might be contributing to the large numbers of mild traumatic brain injuries in American military personnel.

“This is of course an occupational question for Swedish Armed Forces. In light of the results of the study, the Swedish military has instituted restrictions in the number of firing rounds a person is allowed to be exposed to in a single day”, says Annette Säljö.

Direct studies on humans are difficult to perform, since biomarkers of injury in cerebrospinal fluid or blood and imaging studies such as computed tomography (CT) and magnetic resonance imaging (MRI) do not appear to be specific or sensitive enough to detect mild brain injury.

Helena Aaberg | alfa
Further information:
http://www.liebertonline.com/doi/abs/10.1089/neu.2008.0602

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>