Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blast overpressure is generated from the firing of weapons and may cause brain injury

19.01.2009
The brain may be injured by the noise, which is produced when, for example, an anti-tank weapon (Bazooka, Karl Gustav) or a howitzer (Haubits) is fired. Scientists at the Sahlgrenska Academy demonstrated mild injury to brain tissue. In response to this, the Swedish Armed Forces restricted the number of rounds per day Swedish personnel can be exposed to.

A number of reports, which have appeared during the last few years, have shown that the brain is sensitive to blast. This study determines whether the occupational standards for the highest levels of blast exposure were valid enough to avoid brain injuries.

Traumatic brain injury is very common among war veterans from Iraq and Afghanistan and the majority has been exposed to explosions. The soldiers have symptoms of disorders of memory, mental processes, emotion, sleep, speech, vision and hearing. The symptoms may be similar to those of post traumatic stress syndrome, which may be caused by factors other than combat experience.

The brain may be affected by the blast, which is generated during firing of weapons

The Swedish Armed Forces sponsored a study, which has been carried out by scientists at the Sahlgrenska Academy, University of Gothenburg, Sweden. They have examined the effects of noise after the firing of a Haubits, an anti tank weapon (Karl Gustav) and an automatic rifle and by the detonation of plastic explosives underwater. The study was done on anaesthetized pigs and rats.

“We examined the maximal peak level of the blast in the brain transmitted from the blast in the air, as well as, brain tissue changes that were detected with the microscope, says Annette Säljö, one of the scientists who conducted the study.

The noise produced by the firing of both the haubits and the anti-tank weapon exceeds the occupational standards for highest levels of blast exposure. The scientists found that the maximal peak levels of the blast were unexpectedly high in the brain, i.e. that skin and bone appeared to protect the brain poorly. The results suggest that the degree of transmission of a pressure wave from air or water to the brain depends on the dominating frequencies in the frequency spectrum of the noise; low frequencies are transmitted considerably better than high frequencies.

Blast overpressure may result in haemorrhages in the brain

The microscopic examination of the brain showed that the blast from certain weapons produces small haemorrhages (bleeding) in the brain tissue and the meninges (lining of the brain). The examination also suggested that blast exposure leads to the development of brain edema, i.e. increased fluid content. The scientists were later able to support this finding with other measurements. The results are in agreement with findings in the brains of soldiers who had been injured or died after being exposed to explosions in wars, from WW1 to the war in Iraq.

The Swedish Armed Forces have restricted their safety regulations

In summary, the study shows that the maximal peak levels of blast generated by the firing of certain weapons led to a small but measurable effect on the brains of pigs and rats.

The study also showed that this effect on the brain becomes worse with increasing maximal peak blast levels. The results poses the question as to whether exposure to even lower levels of blast than previous thought injurious might be contributing to the large numbers of mild traumatic brain injuries in American military personnel.

“This is of course an occupational question for Swedish Armed Forces. In light of the results of the study, the Swedish military has instituted restrictions in the number of firing rounds a person is allowed to be exposed to in a single day”, says Annette Säljö.

Direct studies on humans are difficult to perform, since biomarkers of injury in cerebrospinal fluid or blood and imaging studies such as computed tomography (CT) and magnetic resonance imaging (MRI) do not appear to be specific or sensitive enough to detect mild brain injury.

Helena Aaberg | alfa
Further information:
http://www.liebertonline.com/doi/abs/10.1089/neu.2008.0602

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>