Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From blank round to a potently active substance?

19.04.2013
A long-forgotten candidate for antiviral therapy is undergoing a renaissance: Since the 1970s, the small molecule CMA has been considered a potent agent against viral infections, yet it was never approved for clinical use.

Scientists at the Bonn University Hospital have now deciphered how the molecule can actually stimulate the immune system to combat viruses. The results are now being presented in the journal “EMBO” of the European Molecular Biology Organization.

Finding an active substance to stimulate the immune system and thus better combat dangerous viruses has been the dream of medical researchers for some time. Common viral diseases include influenza, hepatitis and AIDS. “A number of products have promised to activate the immune system but, in reality, there still is no such agent yet,” says Prof. Dr. Veit Hornung from the Institute for Clinical Chemistry and Clinical Pharmacology of the Bonn University Hospital.

The only substances that have been on the market to date prevent the proliferation of specific viruses, themselves. An active substance that could arm the immune system against a variety of viruses has not yet been discovered.

The compound CMA was only effective in mice and not in humans

At the end of the 1970s, scientists were nearing a breakthrough: 10-carboxymethyl-9-acridanone (CMA) appeared to be a suitable candidate for antiviral therapy. In the mouse model, CMA yielded unexpectedly potent activation of the immune system and a significant release of interferon resulting in an extremely strong antiviral effect. However, the result was unfortunately not reproducible in human cells. Why CMA stimulates the antiviral response in mice while showing no effect in humans has remained unexplained for quite sometime. That is until Prof. Hornung coincidentally saw an old publication regarding CMA and decided it was worthwhile to reexplore the mechanism of action of this molecule.

The same receptor - differing mechanism of action

Prof. Hornung believed that the lack of transferability between mice and humans might be associated with the specific target structures that CMA latches on to. The team working with Prof. Hornung was then able to identify the protein to which CMA attaches, its receptor, in mouse cells. However, the human counterpart of this receptor did not respond to CMA. When CMA binds to the receptor in mice, a signal cascade is set into motion that leads to the release of interferons which in turn boost the immune system. However, in order for this to work, CMA and its receptor must fit together like a lock and key. Together with the laboratory of Prof. Dr. Karl-Peter Hopfner from the Gene Center at the Ludwig Maximilian University in Munich, the team from the Bonn University Hospital investigated the receptor variants of mice and humans in cell cultures and as purified proteins.
Animal models cannot easily be transferred to humans

“A few small differences in the receptor make the active substance completely ineffective in humans,” reports lead author Taner Cavlar, postgraduate in Prof. Hornung’s team. In humans, this prevents CMA from being able to latch its crucial receptor and release interferon, even though immune stimulation occurs in mice. “This is an example of the fact that results from animal models cannot always be easily transferred to humans,” says Prof. Hornung. “Comparative investigations on human cells should take place at an early stage of active substance development.”

Findings inspire the search for an antiviral drug

Since the scientists were able to figure out the exact structure of the mouse and human receptors, they now have an approach to see if there are conditions under which CMA could also arm the human immune system to fight viruses. This is now the next step which the researchers want to address with their colleagues. However, it will likely take many years until an effective drug to combat viruses becomes available. “Nevertheless, when we are able to develop such a potent substance, only very small amounts would be enough to fight a variety of viral infections early on,” says Prof. Hornung.
Publication: Species-specific detection of the antiviral small-molecule compound CMA by STING, The EMBO Journal, DOI: 10.1038/emboj.2013.86

Contact information:

Prof. Dr. Veit Hornung
Institute for Clinical Chemistry and Clinical Pharmacology
of the Bonn University Hospital
Tel. +49-228-28751200
E-Mail: veit.hornung@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>