Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bladder cancer detected via amplified gene in cells found in urine

24.09.2008
M. D. Anderson-led team indicates Aurora kinase A is a biomarker of disease

Counting the copies of a specific gene in cells gathered from a urine sample may provide a simple, noninvasive way to detect bladder cancer, a team led by researchers at The University of Texas M. D. Anderson Cancer Center reports in the Journal of the National Cancer Institute.

When the telltale gene, Aurora kinase A, is numerous and overexpressed in urothelial cells, errors during cell division follow, the team also found. The new cells have too few or too many chromosomes, instead of the normal pairs of 23 chromosomes.

"Abnormal chromosome counts are the most fundamental feature - the signature - of human cancers," said senior author Bogdan Czerniak, M.D., Ph.D., professor in M. D. Anderson's Department of Pathology. "We have further clarified the role that the Aurora kinase A gene (AURKA) plays in this misaggregation of chromosomes in bladder cancer.

"As a biomarker, Aurora kinase A can detect bladder cancer in voided urine with high degrees of sensitivity and specificity," Czerniak said.

Bladder cancer is the fifth most common cancer in the United States, with an estimated 68,000 new cases and about 14,000 deaths annually. It is usually diagnosed after a patient has symptoms by biopsy of tissue removed during a cytoscopic examination of the bladder or microscopic analysis of cells found in the urine.

FISH finds gene, ferrets out bladder cancer

The team used fluorescence in situ hybridization (FISH) to count copies of the gene in urothelial cells from the bladder culled from urine samples. A blinded analysis of samples from 23 bladder cancer patients and seven cancer-free controls showed the AURKA biomarker identified all 23 cancer cases and correctly characterized six of the seven controls as not having bladder cancer.

The biomarker test was validated in urine samples from a separate group of 100 bladder cancer patients and 148 controls. Blinded analysis showed the biomarker accurately identified 87 of the cancer cases and characterized 96.6 percent of the controls as cancer-free, producing only five false positives.

Cytological analysis was conducted on additional samples from 59 of the cancer cases. Microscopic examination of the cells identified 48 of the 59 cancers (81.4 percent). Nine of the 11 cases mischaracterized by cytology were correctly identified by the FISH Aurora kinase A test. "It appears that the biomarker is better than cytological analysis of cells isolated from urine," Czerniak said.

"Our next step is to develop a U.S. Food and Drug Administration approved, commercially available test," Czerniak said. That will require independent validation in prospective, multi-institutional clinical trials. If approved, the test could detect new and recurrent cases earlier, leading to increased bladder preservation and improved survival.

Greater Aurora kinase A, more chromosomal confusion

In a series of experiments that led to the urine tests, the scientists demonstrated that Aurora kinase A overexpression is tightly associated with chromosomal misaggregation, and both occur most heavily in the most aggressive forms of bladder cancer.

The gene encodes a protein important to orderly cell division and equal segregation of chromosomes. Aurora kinase A is a critical protein involved in the duplication, maturation and distribution of centrosomes, which function during cell division to assure the two daughter cells receive the normal 23 pairs of chromosomes.

Current study co-author Subrata Sen, Ph.D., associate professor in M. D. Anderson's Department of Molecular Pathology, and colleagues showed in 1998 that AURKA is an oncogene that is overexpressed and amplified in many types of human cancers, contributing to creation of abnormal centrosomes. These, in turn, lead to abnormal numbers of chromosomes in the daughter cells - a condition called aneuploidy.

Sen, Czerniak and others, showed that the AURKA gene is overexpressed and numerous in human bladder cancer and in 2004 reported that it destabilizes and inhibits the cancer-fighting gene p53.

Building on this work, the team analyzed 15 paired samples of bladder cancer and nearby urothelium for AURKA overexpression. Higher levels of expression were associated with high-grade, late-stage tumors with abnormal numbers of chromosomes. Next, they analyzed 11 bladder cancer lines and found a tight correlation between high levels of AURKA expression and multiple copies of chromosomes.

Finally, they forced AURKA overexpression in a urothelial cell line and found that greater gene activity was associated with a four-fold increase in the number of cells with more than three centrosomes, a two-fold increase in cells with multiple copies of chromosomes 3, 7 and 17, and a four-fold increase in the percentage of cells with abnormal chromosomal counts.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>