Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bladder cancer detected via amplified gene in cells found in urine

24.09.2008
M. D. Anderson-led team indicates Aurora kinase A is a biomarker of disease

Counting the copies of a specific gene in cells gathered from a urine sample may provide a simple, noninvasive way to detect bladder cancer, a team led by researchers at The University of Texas M. D. Anderson Cancer Center reports in the Journal of the National Cancer Institute.

When the telltale gene, Aurora kinase A, is numerous and overexpressed in urothelial cells, errors during cell division follow, the team also found. The new cells have too few or too many chromosomes, instead of the normal pairs of 23 chromosomes.

"Abnormal chromosome counts are the most fundamental feature - the signature - of human cancers," said senior author Bogdan Czerniak, M.D., Ph.D., professor in M. D. Anderson's Department of Pathology. "We have further clarified the role that the Aurora kinase A gene (AURKA) plays in this misaggregation of chromosomes in bladder cancer.

"As a biomarker, Aurora kinase A can detect bladder cancer in voided urine with high degrees of sensitivity and specificity," Czerniak said.

Bladder cancer is the fifth most common cancer in the United States, with an estimated 68,000 new cases and about 14,000 deaths annually. It is usually diagnosed after a patient has symptoms by biopsy of tissue removed during a cytoscopic examination of the bladder or microscopic analysis of cells found in the urine.

FISH finds gene, ferrets out bladder cancer

The team used fluorescence in situ hybridization (FISH) to count copies of the gene in urothelial cells from the bladder culled from urine samples. A blinded analysis of samples from 23 bladder cancer patients and seven cancer-free controls showed the AURKA biomarker identified all 23 cancer cases and correctly characterized six of the seven controls as not having bladder cancer.

The biomarker test was validated in urine samples from a separate group of 100 bladder cancer patients and 148 controls. Blinded analysis showed the biomarker accurately identified 87 of the cancer cases and characterized 96.6 percent of the controls as cancer-free, producing only five false positives.

Cytological analysis was conducted on additional samples from 59 of the cancer cases. Microscopic examination of the cells identified 48 of the 59 cancers (81.4 percent). Nine of the 11 cases mischaracterized by cytology were correctly identified by the FISH Aurora kinase A test. "It appears that the biomarker is better than cytological analysis of cells isolated from urine," Czerniak said.

"Our next step is to develop a U.S. Food and Drug Administration approved, commercially available test," Czerniak said. That will require independent validation in prospective, multi-institutional clinical trials. If approved, the test could detect new and recurrent cases earlier, leading to increased bladder preservation and improved survival.

Greater Aurora kinase A, more chromosomal confusion

In a series of experiments that led to the urine tests, the scientists demonstrated that Aurora kinase A overexpression is tightly associated with chromosomal misaggregation, and both occur most heavily in the most aggressive forms of bladder cancer.

The gene encodes a protein important to orderly cell division and equal segregation of chromosomes. Aurora kinase A is a critical protein involved in the duplication, maturation and distribution of centrosomes, which function during cell division to assure the two daughter cells receive the normal 23 pairs of chromosomes.

Current study co-author Subrata Sen, Ph.D., associate professor in M. D. Anderson's Department of Molecular Pathology, and colleagues showed in 1998 that AURKA is an oncogene that is overexpressed and amplified in many types of human cancers, contributing to creation of abnormal centrosomes. These, in turn, lead to abnormal numbers of chromosomes in the daughter cells - a condition called aneuploidy.

Sen, Czerniak and others, showed that the AURKA gene is overexpressed and numerous in human bladder cancer and in 2004 reported that it destabilizes and inhibits the cancer-fighting gene p53.

Building on this work, the team analyzed 15 paired samples of bladder cancer and nearby urothelium for AURKA overexpression. Higher levels of expression were associated with high-grade, late-stage tumors with abnormal numbers of chromosomes. Next, they analyzed 11 bladder cancer lines and found a tight correlation between high levels of AURKA expression and multiple copies of chromosomes.

Finally, they forced AURKA overexpression in a urothelial cell line and found that greater gene activity was associated with a four-fold increase in the number of cells with more than three centrosomes, a two-fold increase in cells with multiple copies of chromosomes 3, 7 and 17, and a four-fold increase in the percentage of cells with abnormal chromosomal counts.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>