Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biphasic electrical stimulation: A strategy may bring hope to spinal cord injury patients

26.08.2013
Researchers at the Beihang University School of Biological Science and Medical Engineering, led by Dr. Yubo Fan, have discovered that Biphasic Electrical stimulation (BES), a non-chemical procedure, may be used as a strategy for preventing cell apoptosis in stem cell-based transplantation therapy.

The article describing their studies will be published in the August 2013 issue of Experimental Biology and Medicine. The scientists believe that their technique will be used for spinal cord injury patients in the future.

Spinal cord injury (SCI) is a serious disease of the central nervous system. According to Spinal Cord Injury Facts & Statistics, 250,000 Americans are spinal cord injured patients. Approximately 52% of spinal cord injured individuals are considered as paraplegic, and 47% patients are quadriplegic. In addition, 11,000 new injuries occur each year, and 82% are male.

Transplantation of Stem Cells is a potential clinical therapy for repair and regeneration of injured spinal cord, and brings new hope for patients. However, the survival rate of transplanted cells is relatively low because the cells are particularly vulnerable to apoptosis in the spinal cord. Factors proposed for causing such low survival include immune reactions, limited trophic factors and hypoxia. It appears that a lack of adequate growth factors plays an important role in the survival of transplanted cells. "We've shown for the very first time that BES may provide insight into preventing growth factor deprivation-triggered apoptosis in olfactory bulb neural precursor cells (OB NPCs)," said Yubo Fan, professor of Biological Science and Medical Engineering at Beihang and senior author. "These findings suggest that BES may thus be used as a strategy to improve cell survival and prevent cell apoptosis in stem cell-based transplantation therapies," Fan explained. The results may guide future efforts to restore functions lost after spinal cord injury.

The team of researchers investigated the protective effects of BES on growth factor-deprived apoptosis in OB NPCs. The NPCs were exposed to 12 h of BES. The results were that BES enhanced cell survival and prevented the apoptosis of NPCs caused by growth factor deprivation. The anti-apoptotic effect of BES was dependent on the activation of the PI3K/Akt signaling cascade and an increase in brain-derived neurotrophic factor (BDNF) production. "What was especially surprising and exciting was that a non-chemical procedure can prevent apoptosis in stem cells therapy for spinal cord injury patients," Fan said. "How BES precisely regulates the survival of exogenous stem cells is still unknown, but will be an extremely novel area of research on spinal cord injury in the future," Dr. Fan added.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "The fact that Biphasic Electrical Stimulation can improve the survival of neural precursor cells is truly exciting and will provide the basis for future studies that could lead to novel therapies for patients with spinal cord injury. I look forward to future advances in this field".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

Dr. Yubo Fan | EurekAlert!
Further information:
http://www.sebm.org

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>