Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable implant may lessen side effects of radiation to treat prostate cancer

11.06.2013
VCU Massey Cancer Center is first in the United States to test the device

Several years ago, Virginia Commonwealth University Massey Cancer Center became the first center in the United States to test an Israeli-invented device designed to increase the space between the prostate and the rectum in prostate cancer patients undergoing radiation therapy. Now, results from the international Phase I clinical trial show that the device has the potential to significantly reduce rectal injury, a side effect caused by unwanted radiation exposure that can leave men with compromised bowel function following treatment.

Results of the 27-patient prospective trial were recently published in the Journal of Radiation Oncology. The device known as the BioProtect Balloon Implant was tested on patients with localized prostate cancer. It is designed to reduce radiation exposure to the rectum by expanding to increase the space between the rectum and the prostate. It remains in place throughout the treatment process and is designed to biodegrade completely within six months.

"We found that the addition of BioProtect reduced the radiation dose delivered to the rectum by an average of about 30 percent," says local primary investigator Mitchell Anscher, M.D., Florence and Hyman Meyers Chair of Radiation Oncology at VCU Massey Cancer Center. "Most notable was the device's ability to reduce exposure at higher radiation levels, which indicates that the cancer could be safely treated with more aggressive protocols."

The researchers observed a greater reduction in radiation exposure to the rectum at increasing radiation dose levels. At 50 percent of prescribed dose, there was little difference in rectal tissue exposure. However, there was a 55.3 percent reduction at 70 percent of the prescribed dosage, a 64 percent reduction at 80 percent of the prescribed dosage, a 72 percent reduction at 90 percent of the prescribed dosage and an 82.3 percent reduction at 100 percent of the prescribed dosage.

As anticipated, all implanted balloons started to degrade three months after implantation. The researchers concluded that the device could be especially useful in hypofractionated radiation therapy. Hypofractionated radiation therapy uses larger doses of radiation applied over a shorter number of treatments instead of delivering a small percentage of the total dose during daily treatments spread over a longer period of time.

"Massey has many patients that travel from rural areas for care. If this device allows us to deliver the prescribed radiation dose over a shorter period of time, we can reduce the overall burden on the patient and they can spend less time away from work and their family," says Anscher. "We hope to initiate a Phase II clinical trial in a larger cohort of patients in order to determine the effectiveness of the device in reducing rectal injury in comparison to standard treatment protocols."

Anscher collaborated with the study's lead investigator Gyorgy Kovacs, M.D., Ph.D., from the University of Lubeck, Germany; Dieter Jocham, M.D., and Gunther Bohlen, M.D., also from the University of Lubeck; Eliahu Gez, M.D., Rami Ben Yosef, M.D., Benjamin W. Corn, M.D., and Fabrizio Dal Moro, M.D., all from the Department of Radiation Oncology at Tel Aviv Sourasky Medical Center, Israel; Giovanni Scarzello, M.D., from the Department of Radiotherapy at the University of Padova, Italy; and Isaac Koziol, M.D., Mathew Bassignani, M.D., and Taryn Torre, M.D., all from Virginia Urology; and Shmuel Cytron, M.D., from Barzilai Medical Center, Israel.

This research was supported, in part, by funding from VCU Massey Cancer Center's NIH-NCI Cancer Center Support Grant P30 CA016059.

The full manuscript of the study is available online at:

http://www.sciencedirect.com/science/article/pii/S0167814013000236

News directors:

Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact John Wallace, (804) 628-1550.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 67 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at http://www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see http://www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>