Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biodegradable implant may lessen side effects of radiation to treat prostate cancer

VCU Massey Cancer Center is first in the United States to test the device

Several years ago, Virginia Commonwealth University Massey Cancer Center became the first center in the United States to test an Israeli-invented device designed to increase the space between the prostate and the rectum in prostate cancer patients undergoing radiation therapy. Now, results from the international Phase I clinical trial show that the device has the potential to significantly reduce rectal injury, a side effect caused by unwanted radiation exposure that can leave men with compromised bowel function following treatment.

Results of the 27-patient prospective trial were recently published in the Journal of Radiation Oncology. The device known as the BioProtect Balloon Implant was tested on patients with localized prostate cancer. It is designed to reduce radiation exposure to the rectum by expanding to increase the space between the rectum and the prostate. It remains in place throughout the treatment process and is designed to biodegrade completely within six months.

"We found that the addition of BioProtect reduced the radiation dose delivered to the rectum by an average of about 30 percent," says local primary investigator Mitchell Anscher, M.D., Florence and Hyman Meyers Chair of Radiation Oncology at VCU Massey Cancer Center. "Most notable was the device's ability to reduce exposure at higher radiation levels, which indicates that the cancer could be safely treated with more aggressive protocols."

The researchers observed a greater reduction in radiation exposure to the rectum at increasing radiation dose levels. At 50 percent of prescribed dose, there was little difference in rectal tissue exposure. However, there was a 55.3 percent reduction at 70 percent of the prescribed dosage, a 64 percent reduction at 80 percent of the prescribed dosage, a 72 percent reduction at 90 percent of the prescribed dosage and an 82.3 percent reduction at 100 percent of the prescribed dosage.

As anticipated, all implanted balloons started to degrade three months after implantation. The researchers concluded that the device could be especially useful in hypofractionated radiation therapy. Hypofractionated radiation therapy uses larger doses of radiation applied over a shorter number of treatments instead of delivering a small percentage of the total dose during daily treatments spread over a longer period of time.

"Massey has many patients that travel from rural areas for care. If this device allows us to deliver the prescribed radiation dose over a shorter period of time, we can reduce the overall burden on the patient and they can spend less time away from work and their family," says Anscher. "We hope to initiate a Phase II clinical trial in a larger cohort of patients in order to determine the effectiveness of the device in reducing rectal injury in comparison to standard treatment protocols."

Anscher collaborated with the study's lead investigator Gyorgy Kovacs, M.D., Ph.D., from the University of Lubeck, Germany; Dieter Jocham, M.D., and Gunther Bohlen, M.D., also from the University of Lubeck; Eliahu Gez, M.D., Rami Ben Yosef, M.D., Benjamin W. Corn, M.D., and Fabrizio Dal Moro, M.D., all from the Department of Radiation Oncology at Tel Aviv Sourasky Medical Center, Israel; Giovanni Scarzello, M.D., from the Department of Radiotherapy at the University of Padova, Italy; and Isaac Koziol, M.D., Mathew Bassignani, M.D., and Taryn Torre, M.D., all from Virginia Urology; and Shmuel Cytron, M.D., from Barzilai Medical Center, Israel.

This research was supported, in part, by funding from VCU Massey Cancer Center's NIH-NCI Cancer Center Support Grant P30 CA016059.

The full manuscript of the study is available online at:

News directors:

Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact John Wallace, (804) 628-1550.

About VCU Massey Cancer Center

VCU Massey Cancer Center is one of only 67 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately to cure cancer. Visit Massey online at or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center

Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see

John Wallace | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>