Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochip measures glucose in saliva, not blood

24.01.2012
Engineers at Brown University have designed a biological device that can measure glucose concentrations in human saliva.

The technique could eliminate the need for diabetics to draw blood to check their glucose levels. The biochip uses plasmonic interferometers and could be used to measure a range of biological and environmental substances. Results are published in Nano Letters.

For the 26 million Americans with diabetes, drawing blood is the most prevalent way to check glucose levels. It is invasive and at least minimally painful. Researchers at Brown University are working on a new sensor that can check blood sugar levels by measuring glucose concentrations in saliva instead.

The technique takes advantage of a convergence of nanotechnology and surface plasmonics, which explores the interaction of electrons and photons (light). The engineers at Brown etched thousands of plasmonic interferometers onto a fingernail-size biochip and measured the concentration of glucose molecules in water on the chip. Their results showed that the specially designed biochip could detect glucose levels similar to the levels found in human saliva. Glucose in human saliva is typically about 100 times less concentrated than in the blood.

“This is proof of concept that plasmonic interferometers can be used to detect molecules in low concentrations, using a footprint that is ten times smaller than a human hair,” said Domenico Pacifici, assistant professor of engineering and lead author of the paper published in Nano Letters, a journal of the American Chemical Society.

The technique can be used to detect other chemicals or substances, from anthrax to biological compounds, Pacifici said, “and to detect them all at once, in parallel, using the same chip.”

To create the sensor, the researchers carved a slit about 100 nanometers wide and etched two 200 nanometer-wide grooves on either side of the slit. The slit captures incoming photons and confines them. The grooves, meanwhile, scatter the incoming photons, which interact with the free electrons bounding around on the sensor’s metal surface. Those free electron-photon interactions create a surface plasmon polariton, a special wave with a wavelength that is narrower than a photon in free space. These surface plasmon waves move along the sensor’s surface until they encounter the photons in the slit, much like two ocean waves coming from different directions and colliding with each other. This “interference” between the two waves determines maxima and minima in the light intensity transmitted through the slit. The presence of an analyte (the chemical being measured) on the sensor surface generates a change in the relative phase difference between the two surface plasmon waves, which in turns causes a change in light intensity, measured by the researchers in real time.

“The slit is acting as a mixer for the three beams — the incident light and the surface plasmon waves,” Pacifici said.

The engineers learned they could vary the phase shift for an interferometer by changing the distance between the grooves and the slit, meaning they could tune the interference generated by the waves. The researchers could tune the thousands of interferometers to establish baselines, which could then be used to accurately measure concentrations of glucose in water as low as 0.36 milligrams per deciliter.

“It could be possible to use these biochips to carry out the screening of multiple biomarkers for individual patients, all at once and in parallel, with unprecedented sensitivity,” Pacifici said.

The engineers next plan to build sensors tailored for glucose and for other substances to further test the devices. “The proposed approach will enable very high throughput detection of environmentally and biologically relevant analytes in an extremely compact design. We can do it with a sensitivity that rivals modern technologies,” Pacifici said.

Tayhas Palmore, professor of engineering, is a contributing author on the paper. Graduate students Jing Feng (engineering) and Vince Siu (biology), who designed the microfluidic channels and carried out the experiments, are listed as the first two authors on the paper. Other authors include Brown engineering graduate student Steve Rhieu and undergraduates Vihang Mehta, Alec Roelke.

The National Science Foundation and Brown (through a Richard B. Salomon Faculty Research Award) funded the research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Health and Medicine:

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>