Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Binge eating may lead to addiction-like behaviors

25.04.2012
A history of binge eating -- consuming large amounts of food in a short period of time -- may make an individual more likely to show other addiction-like behaviors, including substance abuse, according to Penn State College of Medicine researchers.

In the short term, this finding may shed light on the factors that promote substance abuse, addiction, and relapse. In the long term, may help clinicians treat individuals suffering from this devastating disease.

"Drug addiction persists as a major problem in the United States," said Patricia Sue Grigson, Ph.D., professor, Department of Neural and Behavioral Sciences. "Likewise, excessive food intake, like binge eating, has become problematic. Substance-abuse and binge eating are both characterized by a loss of control over consumption. Given the common characteristics of these two types of disorders, it is not surprising that the co-occurrence of eating disorders and substance abuse disorders is high. It is unknown, however, whether loss of control in one disorder predisposes an individual to loss of control in another."

Grigson and her colleagues found a link between bingeing on fat and the development of cocaine-seeking and -taking behaviors in rats, suggesting that conditions promoting excessive behavior toward one substance can increase the probability of excessive behavior toward another. They report their results in Behavioral Neuroscience.

The researchers used rats to test whether a history of binge eating on fat would augment addiction-like behavior toward cocaine by giving four groups of rats four different diets: normal rat chow; continuous ad lib access to an optional source of dietary fat; one hour of access to optional dietary fat daily; and one hour of access to dietary fat on Mondays, Wednesdays, and Fridays. All four groups also had unrestricted access to nutritionally complete chow and water. The researchers then assessed the cocaine-seeking and -taking behaviors.

"Fat bingeing behaviors developed in the rats with access to dietary fat on Mondays, Wednesdays, and Fridays -- the group with the most restricted access to the optional fat," Grigson said.

This group tended to take more cocaine late in training, continued to try to get cocaine when signaled it was not available, and worked harder for cocaine as work requirements increased.

"While the underlying mechanisms are not known, one point is clear from behavioral data: A history of bingeing on fat changed the brain, physiology, or both in a manner that made these rats more likely to seek and take a drug when tested more than a month later," Grigson said. "We must identify these predisposing neurophysiological changes."

While the consumption of fat in and of itself did not increase the likelihood of subsequent addiction-like behavior for cocaine, the irregular binge-type manner in which the fat was eaten proved critical. Rats that had continuous access to fat consumed more fat than any other group, but were three times less likely to exhibit addiction-like behavior for cocaine than the group with access only on Mondays, Wednesdays and Fridays.

"Indeed, while about 20 percent of those rats and humans exposed to cocaine will develop addiction-like behavior for the drug under normal circumstances, in our study, the probability of addiction to cocaine increased to approximately 50 (percent) for subjects with a history of having binged on fat," Grigson said.

Future studies will look more closely at how bingeing can lead to addiction-like behaviors -- whether bingeing on sugar or a mixture of sugar and fat also promotes cocaine or heroin addiction, for example, and whether bingeing on a drug, in turn, increases the likelihood of bingeing on fat.

Other researchers are Matthew D. Puhl, Angie M. Cason, Department of Neural and Behavioral Sciences, Penn State College of Medicine; Rebecca L. Corwin and Francis H.E. Wojnicki, Department of Nutritional Sciences, Penn State.

The National Institute on Drug Abuse funded this research.

Matthew Solovey | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>