Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bile – not Acid – is Bad Guy in Triggering Precancerous Condition Associated with Reflux Disease

For many people with gastroesophageal reflux disease or GERD, acid reflux drugs are the answer to their woes, curbing the chronic heartburn and regurgitation of food or sour liquid characteristic of the disorder.

But when it comes to Barrett’s esophagus, a condition commonly found in people with GERD, acid control may be less important than beating back another bodily fluid – bile.

A new study published in the Annals of Surgery shows that bile – a digestive fluid that leaks backwards from the stomach into the esophagus along with acid in patients with GERD – plays a critical and previously unrecognized role in the development of Barrett’s esophagus. Study authors say the findings provide new avenues for the prevention and treatment of the condition, which is the only known cause of a rare but often deadly type of cancer called esophageal adenocarcinoma.

“Our ultimate goal is to understand the biology of Barrett’s so that we may find drugs that inhibit or reverse the condition, thus preventing cancer,” said lead study author Jeffrey H. Peters, M.D., an internationally recognized expert in surgery of the esophagus and stomach and the Seymour I. Schwartz Professor and Chair of the Department of Surgery at the University of Rochester Medical Center. “The finding that bile is important is key because current drug therapies for GERD focus largely on acid control.”

Acid-reducing drugs called proton pump inhibitors or PPIs are some of the most popular and best-selling drugs in America according to IMS Health, an organization that tracks pharmacy data. While the drugs do a great job of masking GERD symptoms by neutralizing stomach acid, Peters’ research suggests they may not be the answer when it comes to blocking Barrett’s esophagus. Other research even indicates that such drugs may actually make patients more prone to developing Barrett’s.

Normally, our esophagus – the muscular tube connecting the mouth to the stomach – is lined with skin-like tissue. But, in people with Barrett’s, it’s replaced by tissue that more closely resembles the lining of our intestine, which is smooth and red. Peters’ team found that bile that washes up from the stomach into the esophagus shuts off genes responsible for the normal, skin-like lining of the organ, and turns on genes that produce the intestine-like lining that is the hallmark of Barrett’s.

They discovered that acid, on the other hand, didn’t largely influence the change from one cell type to another.

While previous research established that reflux components encouraged the development of intestinal tissue in the esophagus that alone was never enough to produce the changes that led to Barrett’s.

“The main leap this study makes is that normal esophageal cell growth must be turned off and intestinal cell growth must be turned on in order for the disease to take hold,” noted Peters, who is president elect of the International Society of Diseases of the Esophagus. “We found that bile promotes both processes.”

Study author Tony E. Godfrey, Ph.D., says the findings make perfectly good sense. “In people with Barrett’s, the inside of the esophagus looks like the inside of the intestine. Bile is normally found in the intestinal environment, so when stem cells in the esophagus are exposed to bile that is what they change to.”

According to Godfrey, a research associate professor in the Department of Surgery, the lining of the esophagus is shed and replaced on a regular basis, so blocking bile’s ability to thwart the production of normal esophageal cells may be one potential treatment strategy. Currently, the only way to stop all reflux components, including bile, is to surgically reconstruct the faulty barrier between the esophagus and the stomach.

The team performed the first-ever analysis of all genes that are turned on and off in normal esophageal cells exposed chronically to bile or acid. The findings were tested and confirmed in human samples of normal esophageal cells and in cells from patients with Barrett’s esophagus.

The research is especially exciting for Peters, who regularly treats patients with Barrett’s as well as patients who develop esophageal adenocarcinoma. Though uncommon, Peters says it’s one of the fastest-rising cancers in the world, likely due to the increase in obesity, which triggers reflux disease and Barrett’s. Unfortunately, it is an extremely aggressive cancer that is usually caught at a very late stage, so prevention strategies are greatly needed.

The Department of Surgery at the Medical Center funded the study. In addition to Peters – who serves as the associate editor of the Annals of Surgery – and Godfrey, Marie Reveiller, Ph.D., Sayak Ghatak, Liana Toia, Mary D’Souza, Ph.D., Zhongren Zhou, M.D., Ph.D., and Santhoshi Bandla, Ph.D., from the University of Rochester contributed to the research. Scientists from the Ontario Institute for Cancer Research in Toronto and the Pittsburgh Cancer Institute at the University of Pittsburgh also participated in the study.

For Media Inquiries:
Emily Boynton
Email Emily Boynton

Emily Boynton | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>