Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BGI reports the latest finding on NMNAT1 mutations linked to Leber congenital amaurosis

A five-country international team, led by Casey Eye Institute Molecular Diagnostic laboratory, BGI and Zhejiang University School of Medicine First Affiliated Hospital identified the NMNAT1 mutations as a cause of Leber congenital amaurosis (LCA), one of the most common causes of inherited blindness in children.
The latest study was published online in Nature Genetics, reporting the genetic characteristics underlying some LCA patients, and providing important evidences that support NMNAT1 as a promising target for the gene therapy of LCA.

LCA is an inherited retinal degenerative disease characterized by severe loss of vision at birth. It is estimated that LCA occurs in 2 to 3 per 100,000 newborns. Currently a lot of studies are being done on LCA. Scientists found that LCA could result from mutations in at least 17 genes, all of which are necessary for normal vision and play important roles in the development and function of the retina. More importantly, gene replacement therapy has been successful in animal models and in humans more studies are underway. However, the genetic characters for about 20-30% LCA patients are still unknown.

In this study, the researchers sequenced the whole exome of an LCA patient with no previously identified mutations. They identified 2,460 previously unreported variants. Through a series of screening and analysis, the result indicated that the gene NMNAT1 may serve as a candidate for LCA. Previous studies have shown that NMNAT1 plays an important role in axonal degeneration, because it could encode an enzyme in the NAD (Nicotinamide adenine dinucleotide) biosynthesis pathway associated with protection against axonal degeneration.

In the further evaluation of NMNAT1, the researchers used Sanger sequencing to analyze 50 unrelated LCA patients with no previously indentified mutations, and they found that ten patients carried NMNAT1 mutations. By relating the clinical phenotypes of LCA patients with the mutations, the researchers found that the severity of LCA may correlate with the types of NMNAT 1 mutation: the patients carrying both of the missense variant (c.769G>A, p.Glu257Lys) and nonsense variant (c.507G>A, p.Trp169*) were all blind at birth; while those who carrying only missense variant (c.769G>A, p.Glu257Lys) may develop poor vision within a few years after birth.

Professor Ming Qi, Chief Scientist at BGI, Director of Center for Genetic and Genomic Medicine, Zhejiang University School of Medicine First Affiliated Hospital and James D. Watson Institute of Genome Sciences, said, "LCA is one of the most common causes of inherited blindness in childhood. The study on NMNAT1 lays a solid foundation for understanding genetic characteristics of LCA and other related congenital blindness diseases. It is also an important step forward for developing new molecular diagnosis and gene therapy."

About BGI
BGI was founded in Beijing, China, in 1999 with the mission to become a premier scientific partner for the global research community. The goal of BGI is to make leading-edge genomic science highly accessible, which it achieves through its investment in infrastructure, leveraging the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research: research that has generated over 200 publications in top-tier journals such as Nature and Science. BGI's many accomplishments include: sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, more recently, have sequenced the human Gut Metagenome, and a significant proportion of the genomes for the1000 Genomes Project. For more information about BGI, please visit
Contact Information:

Ming Qi
Professor and Director of Center for Genetic and Genomic Medicine, Zhejiang University School of Medicine First Affiliated Hospital and James D. Watson Institute of Genome Sciences,
Chief Scientist of BGI,
Bicheng Yang
Public Communication Officer

Jia Liu | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>