Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley Lab Scientists Developing Quick Way to ID People Exposed to Ionizing Radiation

18.12.2012
There’s a reason emergency personnel train for the aftermath of a dirty bomb or an explosion at a nuclear power plant. They’ll be faced with a deluge of urgent tasks, such as identifying who’s been irradiated, who has an injury-induced infection, and who’s suffering from both.
Unfortunately, there isn’t a quick way to screen for people exposed to dangerous levels of radiation. There also isn’t a quick way to distinguish between people suffering from radiation exposure versus an infection due to an injury or chemical exposure.

The most common way to measure exposure is a blood assay that tracks chromosomal changes. Another approach is to watch for the onset of physical symptoms. But these methods can take several days to provide results, which is far too late to identify people who’d benefit from immediate treatment.

A much faster way could be coming. Research conducted by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) could lead to a blood test that detects if a person has been exposed to radiation, measures their dose, and separates people suffering from inflammation injuries—all in a matter of hours.
The Berkeley Lab team that's closing in on a faster way to identify people exposed to ionizing radiation. From left: Helen Budworth, Brandon Mannion, Andy Wyrobek, Antoine Snijders, Sandhya Bhatnagar, and Noah Schwartz.

The scientists identified eight DNA-repair genes in human blood whose expression responses change more than twofold soon after blood is exposed to radiation. They also learned how these genes respond when blood is exposed to inflammation stress, which can occur because of an injury or infection. Inflammation can mimic the effects of radiation and lead to false diagnoses.

The result is a panel of biochemical markers that can discriminate between blood samples exposed to radiation, inflammation, or both. The scientists believe these markers could be incorporated into a blood test that quickly triages people involved in radiation-related incidents.

They report their research in a paper recently published online in the journal PLOS ONE.
“In an emergency involving radiation exposure, it’s likely that only a small fraction of all possibly exposed people will be exposed to high doses that require immediate medical attention,” says Andy Wyrobek of Berkeley Lab’s Life Sciences Division. “The goal is to quickly screen for these people so they can get treatment, and avoid overwhelming medical facilities with the larger number of people exposed to low levels of radiation with no immediate medical needs. Our research could lead to a blood test that enables this.”

Wyrobek conducted the research with fellow Berkeley Lab scientists Helen Budworth and Antoine Snijders, as well as several other scientists from Berkeley Lab and other institutions.

Because DNA is one of the major targets of radiation, the Berkeley Lab scientists began their research by focusing on 40 genes that regulate the expression of proteins that carry out DNA-repair tasks. They studied these genes in blood samples taken from healthy people before and after exposing the samples to 2 Gray of X-rays per year, which is about the radiation dose received by radiotherapy patients. They found twelve genes that underwent more than a twofold change in response after exposure. From these, they isolated eight genes that had no overlap between unirradiated and irradiated samples.

The scientists also treated the blood samples with a compound that mimics inflammatory stress. This enabled them to account for gene-expression responses that could be mistaken for signs of radiation exposure, but which are actually caused by injury or infection. In addition, they irradiated a portion of these samples to learn how the genes respond to both inflammation and radiation.

To validate their findings, the scientists analyzed a separate dataset of blood samples that had also been irradiated. They found a close match between their own data and the independent dataset in how the eight genes respond after radiation exposure.

They also compared their findings to a large group of bone marrow transplant patients who received total-body radiation. Again, they found a close match between their data and the gene-expression responses of the patients after they received treatment.

More work is needed, but Wyrobek envisions a blood test using their biochemical markers could be administered via a handheld device similar to what diabetes patients use to check their blood sugar. The test could help emergency personnel quickly identify people exposed to high radiation doses who need immediate care, and people exposed to lower doses who only need long-term monitoring.

The research was funded largely by the Department of Health and Human Services’ Biomedical Advanced Research and Development Authority.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>