Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ben-Gurion U researchers isolate microalgal strain that could reduce cholesterol

04.05.2010
The new strain, IKG-1, is a freshwater microalga that the researchers believe is the only known plant source capable of producing such significant amounts of DGLA

Ben-Gurion University of the Negev (BGU) researchers have isolated a microalgal strain which produces large amounts of a polyunsaturated fatty acid that could reduce blood pressure, chronic inflammation and blood cholesterol level, reducing the risk for heart attacks.

A research team at BGU's Landau Family Microalgal Biotechnology Lab in the Jacob Blaustein Institutes for Desert Research (BIDR) headed by Prof. Zvi HaCohen, is studying an algal mutant that is capable of accumulating up to 15 percent (of dry weight) of a polyunsaturated fatty acid (PUFA) called DGLA (Dihomo-ã-Linolenic Acid). The new strain, IKG-1, is a freshwater microalga that the researchers believe is the only known plant source capable of producing such significant amounts of DGLA.

"Omega-6 PUFA are necessary as components of brain cell membranes and have various nutritional uses," explains HaCohen, incumbent of the Maks and Rochelle Etingin Chair in Desert Research and rector-elect at BGU. "DGLA is one of these PUFA, but appears in nature only as an intermediate in the biosynthesis of other compounds and does not accumulate to any appreciable concentration. There is no natural source for DGLA and although its beneficial effects are well known, very few clinical studies have been conducted."

The research team also included the director of the Landau Laboratory, Prof. Sammy Boussiba; director of the BIDR Prof. Avigad Vonshak; Dr. Inna Khozin-Goldberg; and Ph.D. student Pushkar Shrestha.

"The significant discovery of the IKG-1 microalgal mutant and its high content of DGLA could impact treatment of life-threatening diseases, such as chronic inflammations, multiple sclerosis and arteriosclerosis," explains Dr. Ora Horovitz, vice president of business development for BGN Technologies, the technology transfer and commercialization subsidiary of BGU.

"Our Microalgal Biotechnology Laboratory continues to be a leading innovator in its work on microalgae and its products harnessing Negev resources, such as brackish water and highly abundant sunlight. BGU is continuing to develop valuable pharmaceuticals and nutraceuticals, as well as biofuels and other potential alternative energy sources."

About American Associates, Ben-Gurion University of the Negev

American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision, creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. With more than 19,000 students on campuses in Beer-Sheva, Sede Boqer and Eilat in Israel's southern desert, BGU is a university with a conscience, where the highest academic standards are integrated with community involvement, committed to sustainable development of the Negev. For more information, please visit www.aabgu.org.

Andrew Lavin | EurekAlert!
Further information:
http://www.aabgu.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>