Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Bed Bugs Outsmart Poisons Designed to Control Them

12.01.2009
Bed bugs, once nearly eradicated in the built environment, have made a big comeback recently, especially in urban centers such as New York City.

In the first study to explain the failure to control certain bed bug populations, toxicologists at the University of Massachusetts Amherst and Korea’s Seoul National University show that some of these nocturnal blood suckers have developed resistance to pyrethroid insecticides, in particular deltamethrin, that attack their nervous systems.

The study by senior researcher John Clark and colleagues in the current issue of the Journal of Medical Entomology reveals that these pests have evolved to outsmart the latest generation of chemicals used to control them since DDT was banned. In providing this first look at a mechanism, the researchers summarize that diagnostic tools to detect the relevant mutation in bed bug populations have been “urgently needed for effective control and resistance management.”

Specifically, Clark and colleagues found that bed bugs in New York City have acquired mutations in their nerve cells, which blunt the neurotoxic effect of the pyrethroid toxins used against them. The mutations affect sodium channels (resembling pores) in the neurons’ outer membrane, where electrical nerve impulses are produced. In the past, these nervous system poisons could effectively paralyze and kill the bugs, but this is no longer always the case.

Resistance means mutations are acquired over time by selection with pyrethroids, so the neuronal pores no longer respond to their toxic effects. Clark and colleagues found that these pores in New York City bed bugs are now as much as 264 times more resistant to deltamethrin. This means that even if treated, New York City bed bugs go on to suck blood from unsuspecting sleepers for many more nights.

The researchers are not sure how widely this resistance has spread, that is, whether the bugs that infest hotels, apartment buildings and homes in places other than New York City have developed the same type of immunity to chemical control. But as Clark states, “This type of pyrethroid resistance is common in many pest insects and the failure of the pyrethroids to control bed bug populations across the United States and elsewhere indicates that resistance is already widespread.”

For this study, the researchers collected hard-to-control bed bugs from New York City, plus easy-to-control bed bugs from an untreated colony in Florida, Clark explains. The New York population was determined to be highly resistant (264 times more resistant) to deltamethrin compared to the Florida population by contact exposure. Further, they found that resistance was not due to the increased breakdown of deltamethrin (enzymatic metabolism) by the resistant bed bugs but appeared to be due to an insensitive nervous system.

Using molecular techniques, they sequenced genes related to the sodium ion channel’s operation in both groups and identified two mutations found only in the resistant population. Similar mutations have been found in other pyrethroid-resistant insects and are likely the cause of the resistance in bed bugs, Clark and colleagues note. This helps to narrow the focus of the next set of experiments designed to reveal more about the acquired resistance.

There are several kinds of bed bugs but the one best adapted to the human environment is known in Latin as Cimex (“a bug”) lectularius (“lying down at home”), which shows how long they’ve been with us. Bed bugs arrived here with the earliest European visitors. These nocturnal pests feed about once every five to 10 days but are not thought to spread disease. They use two tubes, one to inject an anticoagulant and mild anesthetic, the other to suck blood.

Janet Lathrop | Newswise Science News
Further information:
http://www.umass.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>