Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bangladeshi and Canadian researchers to stem transmission and deaths from dengue fever

24.01.2013
Funded by the International Development Research Centre, their goal is to understand how dengue is transmitted in the city, focusing on — health, the environment and climate, human behaviour, and urban planning, among others. This knowledge is critical for preventing the spread of the mosquito vector and controlling the virus.

No specific treatment exists for a serious mosquito-borne disease that is sweeping into new parts of the globe. Nor are there any vaccines to prevent infection in the first place.



Combating the disease — dengue — largely depends on controlling the mosquitoes that spread it. To that end, a Canadian-funded effort to stem transmission and deaths from dengue in one hot spot for the disease in Bangladesh could help communities worldwide develop strategies to fend it off.

Dengue is a growing global public health concern. Before 1970, severe dengue epidemics had been recorded in only nine countries. Now the disease is endemic in more than 100 countries in Asia, Africa, and the Americas. The World Health Organization reports that half of the world’s population is at risk. Hundreds of thousands of severe cases and more than 20,000 deaths occur annually.

Dengue is caused by any one of four viruses transmitted by Aedes mosquitoes. These mosquitoes were originally found in tropical and sub-tropical regions, but now exist on all continents except Antarctica. They have caused outbreaks of dengue in the southern United States, and been seen as far north as New York and Chicago.

While dengue exists in both rural and urban areas, city dwellers are most at risk. The mosquito disease-carriers reproduce in standing water, which is common wherever people store water at home for drinking and bathing purposes. The rapid growth of cities in tropical countries has led to overcrowding, allowing more dengue-carrying mosquitoes to live closer to more people.

Because of poor knowledge about dengue transmission and lax regulations, construction sites in the booming cities offer ideal breeding grounds. Uncollected garbage also poses a danger, as discarded plastic packaging, tires, and other containers allow water to accumulate and remain stagnant for days. And if there’s no water for hatching, mosquito eggs can survive in dry conditions for more than year.

Humans help spread the virus in other ways — for example, by shipping tires and other containers to faraway places. Increased air travel means the virus can readily travel with its human host to new and distant locations.

Fighting dengue is an uphill battle, made difficult in many areas by weak surveillance systems, inadequate public health services, and a lack of resources to control the mosquito vectors. A more fundamental problem is that little is known about disease transmission dynamics — how changes in land use, in population, climate, pathogen evolution, and international travel and trade can trigger or exacerbate the spread of the disease.

All these factors are at play in the major cities of Bangladesh. The capital, Dhaka, with a population of 17 million, has experienced repeated devastating outbreaks of the severe form of dengue in recent years. But poor public health infrastructure and a lack of resources mean this poor, rapidly growing city lacks even basic knowledge about how much dengue there is, what strains are circulating, and where and when the infected mosquitoes are to be found.

That could soon change thanks to research being carried out by Bangladeshi and Canadian researchers, funded by Canada’s International Development Research Centre.

The team brings together Bangladesh’s Ministry of Health and Family Welfare with strong scientific organizations (North South University, International Centre for Diarrhoeal Disease Research, Bangladesh and Jahangirnagar University in Bangladesh with the University of Manitoba and the Public Health Agency of Canada). Also participating are a civil society organization with presence and credibility in city slums, and city ward governments.
Their goal, simply put, is to better understand how dengue is transmitted in the city, focusing on many factors — health, the environment and climate, human behaviour, and urban planning, among others. This knowledge is critical for preventing the spread of the mosquito vector and controlling the virus.

That knowledge can then lead to more strategic investments in public health and healthier working and living environments. Good working relationships between community groups and government agencies will help ensure that solutions work well in the affected areas of the city. Dhaka’s experience and new knowledge gained could also benefit other cities and regions facing similar problems.

By building the capacity of local researchers and government institutions to understand and respond to dengue, and by strengthening international collaboration, the research will not only reduce suffering in the short term, but limit opportunities for new diseases to emerge.

Canadians well understand the potential threat these diseases pose, having dealt with invasions by Severe Acute Respiratory Syndrome and West Nile Virus in the recent past. The more Canada can do to assist developing countries control diseases such as dengue, the better for them and for us.

About the authors

Dominique Charron and Andrés Sanchez work on ecohealth — the field of ecosystem approaches to human health at the Ottawa-based Canada’s International Development Research Centre.

Dominique Charron / Andrés Sanchez | Research asia research news
Further information:
http://www.idrc.org.sg
http://www.researchsea.com

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>