Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bad cholesterol inhibits the breakdown of peripheral fat

21.11.2008
The so called bad cholesterol (LDL) inhibits the breakdown of fat in cells of peripheral deposits, according to a study from the Swedish medical university Karolinska Institutet. The discovery reveals a novel function of LDL as a regulator of fat turnover besides its well-established detrimental effects in promoting atherosclerosis.

The study, which is a collaboration of two research groups at Karolinska Institutet, is published in the open-access journal PLoS ONE. It shows that LDL cholesterol slows the rate of fat breakdown (i.e. lipolysis) in adipocytes, the peripheral cells responsible for fat storage.

Previously, it has been known that release of free fatty acid from the peripheral fat to the blood stream increases the synthesis of LDL precursors in the liver.

“The results of our study provide evidence of a reciprocal link between the liver and peripheral fat regulating fat turnover”, says study-initiator Dr Johan Björkegren.

The discovery also opens up for new theories for the well-established association between blood lipids and the metabolic syndrome.

“If proven of general physiological importance, therapies lowering LDL, as for instances Statins, may also affect the turnover of peripheral fat,” continues Dr Björkegren.

The study and has been performed on cell cultures and tissues from humans as well as mouse models with different levels of LDL. The inhibitory effect was also shown to be dependent on LDL receptors on the surface of the fat cells.

“The exact intracellular mechanism for how the binding of LDL to the surface of the fat cells inhibits the breakdown of intracellular fat remains to be revealed”, say project leader Dr Josefin Skogsberg

Publication: ‘ApoB100-LDL Acts as a Metabolic Signal from Liver to Peripheral Fat Causing Inhibition of Lipolysis in Adipocytes” Josefin Skogsberg, Andrea Dicker, Mikael Rydén, Gaby Åström, Roland Nilsson, Hasanuzzaman Bhuiyan, Sigurd Vitols, Aline Mairal, Dominique Langin, Peteris Alberts, Erik Walum, Jesper Tegnér, Anders Hamsten, Peter Arner, Johan Björkegren, PLoS ONE, 20 November 2008

Katarina Sternudd | alfa
Further information:
http://www.plosone.org
http://ki.se

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>