Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria Responsible for Middle Ear Infections, Pink Eye and Sinusitis May Protect Themselves by Stealing Immune Molecules

Bacteria responsible for middle ear infections, pink eye and sinusitis protect themselves from further immune attack by transporting molecules meant to destroy them away from their inner membrane target, according to a study from Nationwide Children’s Hospital. The study, published in the November issue of PLoS Pathogens, is the first to describe a transporter system that bacteria use to ensure their survival.

When the body senses an infection, one of the first lines of defense is to send immune molecules called host-derived antimicrobial peptides (AMPs) to target and kill bacteria. However, bacteria have learned to resist AMPs through a series of countermeasures such as remodeling their outer membrane surface to be less permeable. Nontypeable Haemophilus influenzae (NTHI) is such a bacterium.

NTHI resides in the human upper airway, typically without causing any harm. However, NTHI has the ability to change from a non-harmful bacterium to a disease causing pathogen, responsible for pink eye, sinusitis, middle ear infection and complications of cystic fibrosis. “When transitioning to a harmful pathogen, NTHI defends against increased production of AMPs by using the Sap, which stands for sensitivity to antimicrobial peptides, proteins to arm against attack, ” said Kevin M. Mason, PhD, principal investigator in the Center for Microbial Pathogenesis at The Research Institute at Nationwide Children’s Hospital and lead study author. “Yet, it’s unclear just how the Sap transporter complex provides protection against AMPs.”

To help explain the mechanisms that NTHI uses to protect itself from AMPs, Dr. Mason’s team examined an animal model of middle ear infection. They had previously shown that NTHI bacteria lacking the protein SapA were susceptible to AMP attack. In the study, they describe the Sap transporter system that recognizes and transports host immune defense molecules into the bacterial cell. This system is necessary for the bacteria to survive in the host.

“It seems that NTHI senses the presence of these immune molecules, steals them from the host and arms itself to protect against future attacks,” said Dr. Mason. “NTHI imports AMPs into the bacterial cell and then degrades them in the interior of the cell. By remodeling its membranes, the bacterium appears as already attacked, which protects it from being bothered by additional AMPs. Basically, transporting AMPs acts as a counter strategy to evade innate immune defense and ultimately benefits the bacterium nutritionally.” This study provides the first direct evidence that the protein SapA contributes to bacterial survival by providing protection from AMPs in the host.

Dr. Mason says that targeting the Sap transport system may provide a way to use AMP derivatives as alternatives to antibiotics to treat NTHI infections. “Our long-range goal is to block this uptake system and starve the bacterium of essential nutrients. If we could develop a small molecule inhibitor that could block binding and transport, we could render NTHI susceptible to immune attack, while preserving the body’s normal bacteria that are often disrupted by conventional antibiotic use.”

For more information on Dr. Kevin Mason, visit

For more information on the Center for Microbial Pathogenesis, visit

Erin Pope | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>