Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria's sticky glue is clue to vaccine

Sticky glue secreted by the bacterium Staphylococcus aureus could be the clue scientists have been searching for to make an effective vaccine against MRSA, medical researchers heard today (Wednesday 10 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

Around one third of all people and many animals carry Staphylococcus aureus, which simply lives on most of us as a biofilm fairly harmlessly. Occasionally it causes minor spots on our skin, abscesses and soft tissue infections and some people can get infected over and over again.

On much rarer occasions it causes severe and life threatening infections that are significant medical problems. Many of these infections are made worse by the biofilm component of the overall disease, which helps to protect the bacteria from antibiotics.

"If individuals get infections many times, even after they have been cured by antibiotics, it indicates that their bodies have not become immune to Staph bacteria," said Professor Gerald Pier from Harvard Medical School in Boston, USA.

Staph bacteria tend to grow in cellular communities, particularly on medical devices commonly used on patients, producing what are called biofilm type infections. The devices range from simple catheters placed into blood vessels to those used for blood access for patients on dialysis to artificial heart valves, knees and hips. All patients with these types of devices in them have an increased risk for Staph infections. Living in biofilms protects the bacteria from antibiotics, making treatment more difficult.

"To grow as a biofilm the bacteria must produce sticky factors, one of which is a type of complex sugar called PNAG. We are targeting this material as a possible vaccine, but natural exposure to the sugar compound does not result in most people and animals making an immune response that would protect them from attack by the bacteria or recurring infections," said Professor Pier.

By manipulating the sugar chemically the scientists have discovered that they can produce variant forms which can be used as vaccines by causing the right type of immune response, an approach that has already been shown to work successfully in animal studies.

"We now have a way to tip the balance for resistance to infection back towards humans by vaccination," said Professor Pier. "It is most likely that one or more forms of the vaccine will be prepared to test in humans to see which form is best to get the most desirable antibodies made."

In addition, the researchers have created an antibody with the desired properties to give to people if they have a high risk of getting a Staph infection, thus preventing infection. "This antibody is being manufactured to start tests in humans in about 12 to 18 months," said Professor Pier. "An effective antibody treatment for Staph infections could have a major benefit for anyone who enters a hospital or works in the community and is at risk of Staph infections."

Lucy Goodchild | alfa
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>